Determination of four trace preservatives in street food by ionic liquid-based dispersive liquid-liquid micro-extraction

2011 ◽  
Vol 65 (6) ◽  
Author(s):  
Peng Yang ◽  
Haixia Ren ◽  
Hongdeng Qiu ◽  
Xia Liu ◽  
Shengxiang Jiang

AbstractA rapid and simple ionic liquid-based dispersive liquid-liquid micro-extraction (DLLME) method has been developed to pre-concentrate four paraben preservatives (methylparaben, ethylparaben, propylparaben, and butylparaben) from street food (pancakes). Several potentially influential factors such as the type of ionic liquid and disperser solvent, extraction time, sample pH, ionic strength, and the volume of the ionic liquid and disperser solvent were investigated. The optimum experimental conditions for the proposed micro-extraction process were: 0.1 mL of 1-octyl-3-methylimidazolium hexafluorophosphate ([C8MIM][PF6]) as an extraction solvent, 0.1 mL of acetonitrile as a disperser solvent, 5 min extraction time, and sample ionic strength of 30 % sodium chloride in water sample at pH 6.0. The LODs and LOQs were in the range of 1.0–1.5 ng g−1 and 3.5–4.5 ng g−1, respectively. Spiking recoveries were in the range of 60.1–79.5 % and the associated RSDs were all in the range of 1.8–7.0 %. The results show that DLLME is a suitable method for the determination of parabens in pancake samples and ionic liquid is a good extractant in this process.

2012 ◽  
Vol 2012 ◽  
pp. 1-7 ◽  
Author(s):  
Mohsen Zeeb ◽  
Mahdi Sadeghi

An efficient and environmentally friendly sample preparation method based on the application of hydrophobic 1-Hexylpyridinium hexafluorophosphate [Hpy][PF6] ionic liquid (IL) as a microextraction solvent was proposed to preconcentrate terazosin. The performance of the microextraction method was improved by introducing a common ion of pyridinium IL into the sample solution. Due to the presence of the common ion, the solubility of IL significantly decreased. As a result, the phase separation successfully occurred even at high ionic strength, and the volume of the settled IL-phase was not influenced by variations in the ionic strength (up to 30% w/v). After preconcentration step, the enriched phase was introduced to the spectrofluorimeter for the determination of terazosin. The obtained results revealed that this system did not suffer from the limitations of that in conventional ionic-liquid microextraction. Under optimum experimental conditions, the proposed method provided a limit of detection (LOD) of 0.027 μg L−1and a relative standard deviation (R.S.D.) of 2.4%. The present method was successfully applied to terazosin determination in actual pharmaceutical formulations and biological samples. Considering the large variety of ionic liquids, the proposed microextraction method earns many merits, and will present a wide application in the future.


2020 ◽  
Vol 16 (6) ◽  
pp. 722-737
Author(s):  
Cigdem Yengin ◽  
Emrah Kilinc ◽  
Fatma Gulay Der ◽  
Mehmet Can Sezgin ◽  
Ilayda Alcin

Background: Reverse İontophoresis (RI) is one of the promising non-invasive technologies. It relies on the transition of low magnitude current through the skin and thus glucose measurement becomes possible as it is extracted from the surface during this porter current flow. Objective: This paper deals with the development and optimization of an RI determination method for glucose. CE dialysis membrane based artificial skin model was developed and the dependence of RI extraction on various experimental parameters was investigated. Method: Dependence of RI extraction performance on noble electrodes (platinum, silver, palladium, ruthenium, rhodium) was checked with CA, CV and DPV, in a wide pH and ionic strength range. Optimizations on inter-electrode distance, potential type and magnitude, extraction time, gel type, membrane MWCO, usage frequency, pretreatment, artificial body fluids were performed. Results: According to the optimized results, the inter-electrode distance was 7.0 mm and silver was the optimum noble metal. Optimum pH and ionic strength were achieved with 0.05M PBS at pH 7.4. Higher glucose yields were obtained with DPV, while CA and CV achieved almost the same levels. During CA, +0.5V achieved the highest glucose yield and higher potential even caused a decrease. Glucose levels could be monitored for 24 hours. CMC gel was the optimum collection media. Pretreated CE membrane with 12kD MWCO was the artificial skin model. Pretreatment affected the yields while its condition caused no significant difference. Except PBS solution (simulated as artificial plasma), among the various artificial simulated body fluids, intestinal juice formulation (AI) and urine formulation U2 were the optimum extraction media, respectively. Conclusion: In this study, various experimental parameters (pretereatment procedure, type and MWCO values of membranes, inter-electrode distance, electrode material, extraction medium solvents, ionic strength and pH, collection medium gel type, extraction potential type and magnitude, extraction time and etc) were optimized for the non-invasive RI determination of glucose in a CE dialysis membrane-based artificial skin model and various simulated artificial body fluids.


Author(s):  
Wei Li ◽  
Cheng Zheng ◽  
Jian Zhao ◽  
Zhengxiang Ning

A novel microwave assisted multi-stage countercurrent extraction (MAMCE) technique was developed for the extraction of dihydromyricetin from Chinese rattan tea, Ampelopsis grossedentata. The technique combined the advantages of microwave heating and dynamic multi-stage countercurrent extraction and achieved marked improvement in extraction efficiency over microwave assisted batch extraction. Analysis of dihydromyricetin concentrations in the solvent and matrix throughout the extraction process showed that by dividing the extraction into multiple stages and exchanging of solvents between stages, steady and substantial concentration gradients were established between the matrix and solvent, thus enabling the achievement of high extraction efficiency. The yield of dihydromyricetin was significantly affected by temperature, pH, solvent/material ratio and extraction time, and optimal extraction conditions were found to be 80-100°C, at acidic pH with a solvent/material ratio of 25-30 to 1 and extraction time of 5-10 min. With the high extraction efficiency and low usage of extraction solvent, MAMCE could prove to be a promising extraction technique which can be applied to the extraction of dihydromyricentin and other bioactive substances from natural materials.


2021 ◽  
Vol 16 (2) ◽  
pp. 1934578X2199618
Author(s):  
Tran Quoc Toan ◽  
Tran Duy Phong ◽  
Dam Duc Tien ◽  
Nguyen Manh Linh ◽  
Nguyen Thi Mai Anh ◽  
...  

Sargassum is a genus of brown macroalgae in the class Phaeophyta, distributed widely in all oceans, including those of Vietnam. Species of this genus have been proven to possess diverse biological activities, such as antioxidant, anti-fungal, and anti-inflammatory, along with many benefits and applications for human health, including anti-diabetic, obesity, and thrombosis. These benefits arise from a diverse chemical composition, with compounds such as fucoidan, mannitol, and especially phlorotannin—a group of phenolic derivatives found predominantly in brown algae. In this study, we evaluated and optimized the factors that affected the extraction process of phlorotannins from Sargassum swartzii (Turn.) C. Ag., a common species of brown macroalgae in Vietnam. The process utilized ethanol and water as the solvent system, and the extraction process was assisted with the use of microwaves. To carry out optimization studies, Response Surface Methodology (RSM) was adopted according to a Central Composite Desisgn (CCD), taking four processing factors into consideration, ethanol concentration (%, v/v), extraction time (minutes), solvent/material ratio (v/w), and microwave output power (W) as independent variables. Phlorotannin concentration (mgPhE/g) and extract mass (mg) were regarded as optimization outcomes. Experimental conditions that produced the highest phlorotannin yield from 10 g of S. swartzii are as follows: Extraction time of 65 minutes, ethanol concentration of 52%, microwave output power of 613 W, and solvent/material ratio of 33/1 (v/w). These conditions corresponded to a phlorotannin concentration of 5.59 ± 0.11 mg PhE/g, and a total extract content of 27.88 ± 0.13 mg/g.


2010 ◽  
Vol 8 (3) ◽  
pp. 617-625 ◽  
Author(s):  
Hossein Abdolmohammad-Zadeh ◽  
Elnaz Ebrahimzadeh

AbstractA rapid dispersive liquid-liquid micro-extraction (DLLME) methodology based on the application of 1-hexylpyridinium hexafluorophosphate [C6py][PF6] ionic liquid (IL) as an extractant solvent was applied for the pre-concentration of trace levels of cobalt prior to determination by flame atomic absorption spectrometry (FAAS). 1-Phenyl-3-methyl-4-benzoyl-5-pyrazolone (PMBP) was employed as a chelator forming a Co-PMBP complex to extract cobalt ions from aqueous solution into the fine droplets of [C6py][PF6]. Some effective factors that influence the micro-extraction efficiency include the pH, the PMBP concentration, the amount of ionic liquid, the ionic strength, the temperature and the centrifugation time which were investigated and optimized. In the optimum experimental conditions, the limit of detection (3s) and the enrichment factor were 0.70 µg L−1 and 60, respectively. The relative standard deviation (RSD) for six replicate determinations of 50 µg L−1 Co was 2.36%. The calibration graph using the pre-concentration system was linear at levels 2–166 µg L−1 with a correlation coefficient of 0.9982. The applicability of the proposed method was evaluated by the determination of trace amounts of cobalt in several water samples.


2015 ◽  
Vol 98 (3) ◽  
pp. 817-821 ◽  
Author(s):  
Wenchang Wang ◽  
Ye Chen ◽  
Jing Zhang ◽  
Xue Wang ◽  
Zhidong Chen

Abstract A sensitive electrochemical method was developed for the simultaneous determination of Brilliant Blue (BB) and tartrazine (Tz) using an ionic liquid-modified expanded graphite paste electrode (IL-EGPE). The IL-EGPE was prepared by mixing ionic liquid-expanded graphite composite (IL-EG) with solid paraffin. Compared with the EGPE, the IL-EGPE remarkably enhanced the electrocatalytic oxidation signals of BB and Tz. Under optimal experimental conditions, the designed IL-EGPE exhibited wide linear responses to BB and Tz ranging from 5.0 × 10–9 to 4.0 × 10–6 M and 1.0 × 10–8 to 1.0 × 10–6 M, respectively. The detection limits for BB and Tz were 2.0 × 10–9 M (1.6 ng/mL) and 3.3 × 10–9 M (1.8 ng/mL) at an S/N of 3, respectively. This electrode showed good reproducibility, stability, and reusability. The proposed method was successfully applied in the simultaneous determination of BB and Tz in a soft drink with satisfactory results.


2015 ◽  
Vol 768 ◽  
pp. 15-24
Author(s):  
Pu Wang ◽  
Hui Ling Liu ◽  
Bing Wang ◽  
Xiu Wen Cheng ◽  
Qing Hua Chen ◽  
...  

In this study, a rapid and selective method has been developed to determine PENG residues in waste penicillium chrysogenum by using SPE cleanup strategy followed by HPLC. Furthermore, some parameters which influenced the extraction efficiency including extraction mode, solvent and time, while washing solution and eluting solution for SPE were systematically investigated. It should be noted that the extraction process was carried out in a single step by mixing the extraction solvent acetonitrile: formic acid in aqueous solution and chrysogenum samples under ultrasound. The SPE procedure was conducted using Oasis HLB as the clean up cartridge, n-hexane as washing solution, and mixture of acetonitrile and methanol as eluting solution. Under the optimized conditions, the linear of PENG are in the range of 0.1-2000 μg/mL, with the correlation was R2>0.99. In addition, the recoveries of PENG in these samples at three fortification levels of 800-1800mg/kg were 74.98% to 113.47% are obtained, respectively. Moreover, a limits of detection (0.006 mg/kg) and quantification (0.02 mg/kg) could be achieved.


2000 ◽  
Vol 65 (3) ◽  
pp. 326-342
Author(s):  
María S. Crespo-Pinilla ◽  
Fernando Mata-Pérez ◽  
Rosa M. Villamañán

A study of two prewaves of the Ni(II)-SCN- system was carried out under the experimental conditions when the influence of electroreduction of SCN- is negligible. Kinetics of Ni(II) reduction in thiocyanate media on the dropping mercury electrode was studied by DC Tast Polarography (DCTP) via determination of Koutecký's parameter χ; the influence of different variables was analyzed. The study of prewaves was performed using various polarographic techniques. Values of χ depend on the SCN- concentration, pH, ionic strength (Ψ-effect) and on the nature of the supporting electrolyte. The number of electrons n, the transfer coefficient α, the stoichiometric number ν, ∆H≠, and ∆S≠ were determined (compensation effect). The first prewave has character of a reaction in the solution, the second prewave is a surface process. Main features of both mechanisms are common: catalytic nature, one-electron step discharge and the rate-determining process between species of opposite charges.


Processes ◽  
2019 ◽  
Vol 7 (8) ◽  
pp. 489 ◽  
Author(s):  
Xuan Tien Le ◽  
Vo Luu Lan Vi ◽  
Tran Quoc Toan ◽  
Long Giang Bach ◽  
Tran Thanh Truc ◽  
...  

This research aimed to optimize the total polyphenol content (TPC) extracted from soybean sprout powder under different experimental parameters, including ethanol concentration (60–100% v/v), extraction temperature (40–80 °C), extraction time (15–150 min), material:solvent ratio (1:4–1:10 g/mL), the number extraction cycles (1, 2 and 3 times), the age of sprout (0–7 days), and the used part of the sprout (cotyledon, hypocotyl, or radicle). The obtained results were used in response surface methodology, in combination with a central composite design, to model the total polyphenol content (TPC) with respect to three variables, including ethanol concentration, extraction temperature, and material:solvent ratio. The experimental conditions for optimal recovery of TPC consisted of ethanol concentration of 88% (v/v), extraction temperature of 59 °C, material:solvent ratio of 1:6.5 g/mL, extraction time of 60 min, and 2 cycles of maceration. In addition, for maximal TPC, the sprout should undergo the germination of 5 days and the radicle fraction should be used. Based on the suggested optimum conditions, the obtained and verified TPC was 19.801 mg genistein (GE)/g dry weight (d.w.). The obtained dried extract also exhibited low antioxidant activity.


2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
Ying Chen ◽  
Kunze Du ◽  
Jin Li ◽  
Yun Bai ◽  
Mingrui An ◽  
...  

A simple cloud point preconcentration method was developed and validated for the determination of gallic acid, bergenin, quercitrin, and embelin in Ardisia japonica by high-performance liquid chromatography (HPLC) using ultrasonic assisted micellar extraction. Nonionic surfactant Genapol X-080 was selected as the extraction solvent. The effects of various experimental conditions such as the type and concentration of surfactant and salt, temperature, and solution pH on the extraction of these components were studied to optimize the conditions of Ardisia japonica. The solution was incubated in a thermostatic water bath at 60°C for 10 min, and 35% NaH2PO4 (w/v) was added to the solution to promote the phase separation and increase the preconcentration factor. The intraday and interday precision (RSD) were both below 5.0% and the limits of detection (LOD) for the analytes were between 10 and 20 ng·mL−1. The proposed method provides a simple, efficient, and organic solvent-free method to analyze gallic acid, bergenin, quercitrin, and embelin for the quality control of Ardisia japonica.


Sign in / Sign up

Export Citation Format

Share Document