Box behnken design based optimization of solar induced photo catalytic decolourization of textile dye effluent

2013 ◽  
Vol 3 (1) ◽  
Author(s):  
Shanmugam Senthilkumar ◽  
Muthiah Perumalsamy ◽  
Harinarayan Prabhu ◽  
Chiya AhmedBasha ◽  
G. Swaminathan

AbstractBox-Behnken design was employed for the decolourization of synthetic dye bath effluent using solar induced photo catalytic degradation with mixed semi conductor catalysts. Four independent variables namely concentration of dye effluent, catalyst loading, pH and irradiation time was chosen as process variables. The optimum concentrations of dye effluent, catalyst dosage, pH, and irradiation time were found to be 60 mg L−1, 200 mg L−1, 7 and 100 min, respectively, for maximum decolourization of dye effluent (91.24%). Predicted values were found to be in good agreement with experimental values and as a result reflected the precision and the applicability of Response Surface Methodology (RSM) (R2=0.9785 and Adj R2= 0.9569).

2013 ◽  
Vol 63 (2) ◽  
pp. 193-207 ◽  
Author(s):  
Ajit A. Patil ◽  
Sachin S. Bhusari ◽  
Devanand B. Shinde ◽  
Pravin S. Wakte

The response surface methodology using the Box-Behnken design was established to describe supercritical carbon dioxide assisted extraction of phyllanthin from Phyllanthus amarus Schum and Thonn leaves prior to HPLC analysis. The effects of extraction pressure, temperature, modifier concentration and extraction time on the yield of phyllanthin were investigated. By solving the regression equation, the optimum conditions were as follows: extraction pressure 23.2 MPa, temperature 40 °C, methanol as modifier at a concentration of 10 % and time 90 min. Under these conditions, the phyllanthin yield was 12.83 ± 0.28 mg g-1, which was in good agreement with the predicted values. Modifier concentration and extraction time showed a significant effect on the phyllanthin yield.


2010 ◽  
Vol 5 (1) ◽  
Author(s):  
Sudesh S ◽  
Meenakshi M ◽  
Sheeja R.Y ◽  
Thanapalan Murugesan

In the present work, crab shell was used as the biosorbent to remove copper from aqueous solution. Batch experiments were performed at different initial copper concentration of copper solutions (1-40 g/l), initial pH (2-9), temperature (20-400°C), and biosorbent dosages (2-10 g/l). The maximum removal of copper using crab shell occurred at a pH of 3 and at a temperature of 400°C using an optimum biosorbent dosage of 5 g/l. A mathematical model was proposed to identify the effects of the individual interactions of these variables on the biosorption of copper. The results have been modeled using response surface methodology using a Box-Behnken design. The response surface method was developed using three levels (-1, 0, +1) with the above mentioned four factors. The second order quadratic regression model fitted the experimental data with Prob > F to be < 0.0001. The experimental values were found to be in good agreement with the predicted values, with a satisfactory correlation coefficient of R2 = 0.9999.


Catalysts ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 1418
Author(s):  
Waleed Jadaa ◽  
Anand Prakash ◽  
Ajay K. Ray

Photocatalytic degradation of Direct Blue 15 (DB15), an azo dye, was studied using a swirl-flow monolithic reactor under UV irradiation. The degradation reactions were carried out to investigate effects of initial dye concentration, catalyst loading, and light intensity at an optimal pH. The experiments were designed and mathematically modelled by CCD-RSM (central composite design-response surface methodology) approach. It was found that the selected parameters significantly affect DB15 degradation. In terms of the linear term, catalyst loading and light intensity had a synergistic effect, while dye concentration registered the opposite effect. Strong interaction was observed between catalyst loading and both light intensity and initial dye concentration compared with the interaction of light intensity and initial dye concentration. Based on the experimental results, a quadratic model was developed to predict the percentage removal of DB15. The predicted values of the model were in good agreement with the experimental values (R2 = 0.987), indicating the model fits well for the parameter space for which experiments were performed. According to diagnostic plots, the model credibility was valid because its residuals were distributed normally and exhibited a random pattern based on their examination versus the predicted values. The results revealed that the initial dye concentration and catalyst concentration have a significant effect on the mineralization time.


2021 ◽  
Vol 15 ◽  
pp. 48-55
Author(s):  
Owhor Sampson Chisa ◽  
J. D. Amine ◽  
Abdul Gambo Alim ◽  
Luka Bobby Shakarau ◽  
Isaiah Kehinde Ogbobame ◽  
...  

The present work deals with the production of biodiesel from Sandbox (Hura crepitans) seed oil and the optimization of the parameters that influence the transesterification of Sandbox (Hura crepitans)seed oil into biodiesel using Response Surface Methodology. Hura crepitans oil was obtained from by using hydraulic press for Mechanical and n-hexane for solvent extraction. Esterification was done using methanol and sodium hydroxide. A total of 48 experiments using Central Composite Design were carried out. The R-Squared, Adequate Precision, Predicted and Adjusted R-Squared values were 0.9367, 19.219, 0.8576 and 0.9070 respectively. The result of the extraction of oil, physiochemical properties, and optimization process shows that sandbox (Hura crepitans) seed oil has characteristics that are more favorable to biodiesel production. The optimal conditions for extraction of oil from sandbox seed oil were given as alcohol/ oil ratio of 5.0, catalyst amount of 20 g/ml, extraction temperature of 60 ºC, and extraction time of 45.01 minutes, with the predicted oil yield as 97.33% respectively which shows that the experimental values are in good agreement with predicted values.


Entropy ◽  
2018 ◽  
Vol 20 (10) ◽  
pp. 808 ◽  
Author(s):  
Tianhua Ju ◽  
Xueyong Ding ◽  
Yingyi Zhang ◽  
Weiliang Chen ◽  
Xiangkui Cheng ◽  
...  

It is important to know the activity interaction parameters between components in melts in the process of metallurgy. However, it’s considerably difficult to measure them experimentally, relying still to a large extent on theoretical calculations. In this paper, the first-order activity interaction parameter (esj) of j on sulphur in Fe-based melts at 1873 K is investigated by a calculation model established by combining the Miedema model and Toop-Hillert geometric model as well as considering excess entropy and mixing enthalpy. We consider two strategies, with or without using excess entropy in the calculations. Our results show that: (1) the predicted values are in good agreement with those recommended by Japan Society for Promotion of Science (JSPS); and (2) the agreement is even better when excess entropy is considered in the calculations. In addition, the deviations of our theoretical results from experimental values eS(exp)j-eS(cal)j depend on the element j’s locations in the periodic table.


1995 ◽  
Vol 117 (3) ◽  
pp. 234-238 ◽  
Author(s):  
P. Wierzba ◽  
G. A. Karim ◽  
I. Wierzba

A simple analytical model for the mixing and combustion of an axisymmetric turbulent gaseous fuel jet discharging into a co-flowing streaming gaseous environment of an auxiliary fuel and/or a diluent homogeneously mixed with air is presented. A number of gaseous fuels and diluents are considered. It is shown that the combustion characteristics of a fuel jet can be modified significantly by the presence of a relatively small amount of a fuel in the surrounding air at concentrations well below the corresponding local flammability limits. Correlative procedures are presented for estimating changes in the flame length, the size of the combustion zone, and the blowout limits with changes in the type and concentration of the fuel in the surroundings. Predicted values showed generally good agreement with the corresponding experimental values.


1995 ◽  
Vol 117 (3) ◽  
pp. 239-242 ◽  
Author(s):  
S. O. Bade Shrestha ◽  
I. Wierzba ◽  
G. A. Karim

A simple approach is described for the calculation of the rich flammability limits of fuel-diluent mixtures in air for a wide range of initial temperatures based only on the knowledge of the flammability limit of the pure fuel in air at atmospheric temperature and pressure conditions. Various fuel-diluent mixtures that include the fuels methane, ethylene, ethane, propane, butane, carbon monoxide, and hydrogen, and the diluents nitrogen, carbon dioxide, helium, and argon have been considered. Good agreement is shown to exist between predicted values of the rich flammability limits and the corresponding available experimental values for the fuel-diluent mixtures.


2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
Rajnish Kumar ◽  
D. Sivakumar ◽  
Shekhar Kumar ◽  
U. Kamachi Mudali

The hydrodynamic parameters, namely, dispersed phase holdup and flooding throughput, have been investigated in 25 mm diameter pulsed disk and doughnut column (PDDC), in no mass transfer conditions. In this work, using existing correlations on plate pulsed columns, the dispersed phase holdup and the flooding throughput are empirically modelled well using the slip velocity concept. A good agreement is observed between experimental values and predicted values obtained from empirical correlation. The experimental data for dispersed phase holdup and flooding throughput has been modelled using the Van Delden model to describe the hydrodynamics characteristics of a PDDC and necessary adjustable parameters for drop size distribution and dispersed phase holdup are updated for 30% TBP-nitric acid system. The model parameters were estimated by minimizing the absolute error between experimental and theoretical values of flooding throughput and holdup data. It was found that the measured values and observed trends could be described accurately using this model after fitting holdup and flooding data. The error between the experimental and theoretical values of flooding throughput and holdup was found to be less than 10%.


2014 ◽  
Vol 3 (4) ◽  
pp. 21-33
Author(s):  
M.A. Waheed ◽  
O.D. Samuel ◽  
B.O. Bolaji ◽  
O.U. Dairo

The present work deals with the production of biodiesel from Nigerian restaurant waste cooking oil (NRWCO) and the optimization of the parameters that influences the alkaline transesterification of NRWCO into biodiesel using response surface methodology. The optimization parameters like oil: oil/methanol molar ratio, catalyst amount and reaction time were done using Design Expert 6.06 software. It was found that the maximum yield of biodiesel was obtained in 79.8 min for 1: 5.9, oil: methanol ratio, 1.2 wt. % KOH amount. A total of 20 experiments using Central Composite Design were carried out. The R2, adjusted R2 and predicted R2 values were 0.982, 0.9657 and 0.9088 respectively show that the experimental values are in good agreement with the predicted values. The properties of biodiesel at the optimized parameters, thus, produced confirm to the ASTM, EN and BIS specifications, making it an ideal alternative fuel for diesel engine.


1994 ◽  
Vol 116 (3) ◽  
pp. 181-185 ◽  
Author(s):  
I. Wierzba ◽  
S. O. Bade Shrestha ◽  
G. A. Karim

A procedure is described for calculating the lean flammability limits of fuel-diluent mixtures in air over a wide range of fuel-diluent combinations and for different initial mixture temperatures. Good agreement is shown to exist between the predicted values of the limits with the corresponding experimental values for some common gaseous fuels that include CH4, C2H6, C2H4, C3H8, C4H10, H2, and CO and the diluents CO2, N2, He, and Ar over the temperature range of −60°C up to 400°C.


Sign in / Sign up

Export Citation Format

Share Document