scholarly journals Development and in vitro evaluation of buccoadhesive carvedilol tablets

2007 ◽  
Vol 57 (2) ◽  
pp. 185-197 ◽  
Author(s):  
Vamshi Yamsani ◽  
Ramesh Gannu ◽  
Chandrasekhar Kolli ◽  
M. Rao ◽  
Madhusudan Yamsani

Development andin vitroevaluation of buccoadhesive carvedilol tabletsBuccoadhesive tablets of carvedilol were prepared using HPMC K4M, HPMC K15M and Carbopol 934 as mucoadhesive polymers. Fifteen formulations were developed with varying concentrations of polymers. Formulations of the BC or BD series were composed of HPMC K4M or HPMC K15M in ratios of 1:1 to 1:5 whereas in the BE series Carbopol 934 was used (1:0.25 to 1:1.50). The formulations were tested forin vitrodrug release,in vitrobioadhesion, moisture absorption andin vitrodrug permeation through porcine buccal mucosa. Formulation BC3 showed maximum release of the drug (88.7 ± 0.4%) with the Higuchi model release profile and permeated 21.5 ± 2.9% of the drug (flux 8.35 ± 0.291 μg h-1cm-2) permeation coefficient 1.34 ± 0.05 cm h-1) through porcine buccal membrane. BC3 formulation showed 1.62 ± 0.15 N of peak detachment force and 0.24 ± 0.11 mJ of work of adhesion. FTIR results showed no evidence of interaction between the drug and polymers. XRD study revealed that the drug is in crystalline form in the polymer matrix. The results indicate that suitable bioadhesive buccal tablets with desired permeability could be prepared.

Author(s):  
Chandra Sekhar Kolli ◽  
Ramesh Gannu ◽  
Vamshi Vishnu Yamsani ◽  
Kishan V ◽  
Madhsudan Rao Yamsani

The aim of this investigation was to develop and evaluate mucoadhesive buccal patches of prochlorperazine (PCPZ). Permeation of PCPZ was calculated in vitro using porcine buccal membrane. Buccal formulations were developed by solvent-casting technique using hydroxy propylmethyl cellulose (HPMC) as mucoadhesive polymer. The patches were evaluated for in vitro release, moisture absorption and mechanical properties. The optimized formulation, based on in vitro release and moisture absorption studies, was subjected for bioadhesion studies using porcine buccal membrane. In vitro flux of PCPZ was calculated to be 2.14 ± 0.01 µg. h–1.cm–2 and buccal absorption was also demonstrated in vivo in human volunteers.             In vitro drug release and moisture absorbed was governed by HPMC content. Increasing concentration of HPMC delayed the drug release. All formulations followed Zero order release kinetics whereas the release pattern was non-Fickian. The mechanical properties, tensile strength (10.28 ± 2.27 kg mm–2 for formulation P3) and elongation at break reveal that the formulations were found to be strong but not brittle. The peak detachment force and work of adhesion for formulation P3 were 0.68 ± 0.15 N and 0.14 ± 0.08 mJ, respectively. The results indicate that suitable bioadhesive buccal patches of PCPZ with desired permeability and suitable mechanical properties could be prepared


Author(s):  
Soniya Rani ◽  
Nardev Singh

Objective: The objective of the present work was to formulate and evaluate periodontal film, which could be capable of delivering therapeutic concentration of azithromycin and serratiopeptidase for a prolonged period of time and could be easily placed into the periodontal pocket. Methods: The films were prepared by solvent casting method using combinations of ethyl cellulose, hydroxypropyl methylcellulose K4M, hydroxypropyl methylcellulose 50 cps, eudragit L-100, and Chitosan in different ratios using dibutyl phthalate as plasticizer. The periodontal films were evaluated for weight variation, thickness, percentage moisture absorption, percentage moisture loss, folding endurance, percentage swelling index, percentage elongation, and in vitro percentage cumulative drug-enzyme release profile. Results: Formulation F12 was found to be a good periodontal film. Hence, it was considered as an optimized formulation. In vitro drug-enzyme release rate studies using keshary-chien diffusion cell showed maximum drug release in F12 formulation (95.92% for azithromycin and 94.20% for serratiopeptidase at the end of 24 h) compared to other formulations. Conclusion: The optimized formulation F12 showed the best drug-enzyme release profile among the others for the preparation of periodontal film. There is a scope for the further study and development of the azithromycin and serratiopeptidase periodontal films.


2019 ◽  
Vol 9 (1) ◽  
pp. 76-85 ◽  
Author(s):  
R. Nithya ◽  
K. Siram ◽  
R. Hariprasad ◽  
H. Rahman

Background: Paclitaxel (PTX) is a potent anticancer drug which is highly effective against several cancers. Solid lipid nanoparticles (SLNs) loaded with anticancer drugs can enhance its toxicity against tumor cells at low concentrations. Objective: To develop and characterize SLNs of PTX (PSLN) to enhance its toxicity against cancerous cells. Method: The solubility of PTX was screened in various lipids. Solid lipid nanoparticles of PTX (PSLN) were developed by hot homogenization method using Cutina HR and Gelucire 44/14 as lipid carriers and Solutol HS 15 as a surfactant. PSLNs were characterized for size, morphology, zeta potential, entrapment efficiency, physical state of the drug and in vitro release profile in 7.4 pH phosphate buffer saline (PBS). The ability of PTX to enhance toxicity towards cancerous cells was tested by performing cytoxicity assay in MCF7 cell line. Results: Solubility studies of PTX in lipids indicated better solubility when Cutina HR and Gelucire 44/14 were used. PSLNs were found to possess a neutral zeta potential with a size range of 155.4 ± 10.7 nm to 641.9 ± 4.2 nm. In vitro release studies showed a sustained release profile for PSLN over a period of 48 hours. SLNs loaded with PTX were found to be more toxic in killing MCF7 cells at a lower concentration than the free PTX.


Molecules ◽  
2021 ◽  
Vol 26 (2) ◽  
pp. 449
Author(s):  
Ahmed M. Omer ◽  
Zyta M. Ziora ◽  
Tamer M. Tamer ◽  
Randa E. Khalifa ◽  
Mohamed A. Hassan ◽  
...  

An effective drug nanocarrier was developed on the basis of a quaternized aminated chitosan (Q-AmCs) derivative for the efficient encapsulation and slow release of the curcumin (Cur)-drug. A simple ionic gelation method was conducted to formulate Q-AmCs nanoparticles (NPs), using different ratios of sodium tripolyphosphate (TPP) as an ionic crosslinker. Various characterization tools were employed to investigate the structure, surface morphology, and thermal properties of the formulated nanoparticles. The formulated Q-AmCs NPs displayed a smaller particle size of 162 ± 9.10 nm, and higher surface positive charges, with a maximum potential of +48.3 mV, compared to native aminated chitosan (AmCs) NPs (231 ± 7.14 nm, +32.8 mV). The Cur-drug encapsulation efficiency was greatly improved and reached a maximum value of 94.4 ± 0.91%, compared to 75.0 ± 1.13% for AmCs NPs. Moreover, the in vitro Cur-release profile was investigated under the conditions of simulated gastric fluid [SGF; pH 1.2] and simulated colon fluid [SCF; pH 7.4]. For Q-AmCs NPs, the Cur-release rate was meaningfully decreased, and recorded a cumulative release value of 54.0% at pH 7.4, compared to 73.0% for AmCs NPs. The formulated nanoparticles exhibited acceptable biocompatibility and biodegradability. These findings emphasize that Q-AmCs NPs have an outstanding potential for the delivery and slow release of anticancer drugs.


Nanomaterials ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 486
Author(s):  
Abdelrahman I. Rezk ◽  
Jeesoo Park ◽  
Joon Yeon Moon ◽  
Sunny Lee ◽  
Chan Hee Park ◽  
...  

Here, we developed a novel biliary stent coating material that is composed of tri-layer membrane with dual function of sustained release of paclitaxel (PTX) anticancer drug and antibacterial effect. The advantages of using electrospinning technique were considered for the even distribution of PTX and controlled release profile from the nanofiber mat. Furthermore, film cast method was utilized to fabricate AgNPs-immobilized PU film to direct the release towards the tumor site and suppress the biofilm formation. The in vitro antibacterial test conducted against Gram-positive (Staphylococcus aureus) and Gram-negative (Escherichia coli) bacteria species showed excellent antibacterial effect. The in vitro drug release study confirmed the sustained release of PTX from the tri-layer membrane and the release profile fitted first order with correlation coefficient of R2 = 0.98. Furthermore, the release mechanism was studied using Korsmeyer–Peppas model, revealing that the release mechanism follows Fickian diffusion. Based on the results, this novel tri-layer membrane shows curative potential in clinical development.


2010 ◽  
Vol 5 (4) ◽  
pp. 155892501000500 ◽  
Author(s):  
Hang Liu ◽  
Karen K. Leonas ◽  
Yiping Zhao

Poly(εepsilon;-caprolactone) (PCL) electrospun fibers containing ampicillin sodium salt have been produced and twisted into nanofiber yarns. The fiber diameters and crystallinity, the in vitro antimicrobial properties of the yarns, and the in vitro release of ampicillin from yarns containing various ampicillin concentrations are studied. Decreased fiber diameters and reduced diameter variation are observed with the addition of ampicillin salt into the polymer solution. The results from the zone of inhibition test of the yarns against both gram-positive Staphylococcus aureus and gram-negative Klebsiella pneumoniae indicate that the released ampicillin retains its effectiveness after the production processes, therefore the as-spun yarns are antimicrobial active. A burst release of ampicillin from the yarns has been observed in the first hour, and the release is almost completed in 96 hours. The burst release is believed to be due to the low compatibility of ampicillin with PCL, the accumulation of ampicillin on fiber surface and the small fiber diameters. An empirical release model is developed to describe the release profile. The results indicate that the electrospun nanofibers yarns will have a great potential to be used for biomaterials, such as surgical sutures, to decrease the surgical site infection rate.


Head & Neck ◽  
2013 ◽  
Vol 35 (11) ◽  
pp. 1542-1550 ◽  
Author(s):  
Omar Shkeir ◽  
Maria Athanassiou-Papaefthymiou ◽  
Martian Lapadatescu ◽  
Petros Papagerakis ◽  
Michael J. Czerwinski ◽  
...  

Author(s):  
Harini Amballa ◽  
Navaneetha Kaluva ◽  
Sree Giri Prasad Beri ◽  
Krishna Mohan Chinnala ◽  
Mayuri Konda

Mucoadhesive drug release system is a preferably unidirectional release system where mucosal epithelial exterior is enclosed by the mucus deposit that interacts with the bio-adhesive drug delivery system and swelling time of the buccal dosage form which is amplified by mucin molecules at the location of administration. Eplerenone is an Anti-hypertensive drug that undergoes hepatic first pass metabolism and shows 69% of bioavailability. In order to bypass the hepatic first pass metabolism the drug is designed to be delivered through buccal cavity to avoid the first pass metabolism. Eplerenone buccal tablets were formulated by using direct compression method with different polymers like HPMC K 100M, Carbopol 934P, Carbopol 974P, Xantham Gum, Eudragit L100 and NaCMC in various concentrations and compositions. Incompatibility complications were not observed from the FTIR spectrums. The formulated and prepared buccal solid dosage forms were evaluated for pre-compressions and post- compression parameters such as hardness, weight variation, thickness, friability, surface pH, swelling index, in-vitro dissolution studies, drug content uniformity, mucoadhesion strength and mucoadhesion time. Evaluation results of formulation F12 are proven to be the optimal formulation showing highest mucoadhesion time, mucoadhesion strength and in-vitro drug release for prolonged period of time about 8 hours. Eplerenone is best delivered through buccal drug delivery system to enhance its oral bioavailability and bypass the hepatic first pass metabolism.


2016 ◽  
Vol 13 (5) ◽  
pp. 1688-1698 ◽  
Author(s):  
Abdulmalik Alqurshi ◽  
Zahrae Kumar ◽  
Rebecca McDonald ◽  
John Strang ◽  
Asma Buanz ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document