Single phase full bridge inverter with coupled filter inductors and voltage doubler for PV module integrated converter system

2009 ◽  
Vol 57 (4) ◽  
pp. 355-361 ◽  
Author(s):  
Y. Jiang ◽  
J. Pan

Single phase full bridge inverter with coupled filter inductors and voltage doubler for PV module integrated converter systemThis paper presents a single phase full bridge inverter with coupled filter inductors and voltage doubler for PV module integrated converter (MIC) system. In DC/DC stage, full bridge circuit with high frequency sinusoidal pulse width modulation control is used, and high frequency transformer with voltage doubler rectifier circuit to increase conversional ratio is adopted. Finally, at the conversion end the rectified sinusoidal waveforms is generated. The coupled filter inductors, which are placed in voltage doubler, not only reduce circulating current, which increases efficiency but also make the rectified output sinusoidal waveforms of DC/DC stage as smooth voltage source. In DC/AC stage, the full bridge circuit with line frequency square wave control is adopted to reduce switching losses and control cost. To verify the presented analysis a 100 W prototype single phase 220 VAC 50 Hz inverter output has been constructed and the experimental results are given.

This paper presents a single-phase efficient and generalized basic topology that is adaptable for multilevel inverters. The proposed structure is run by a switching pattern of the power switches i.e, subharmonic pulse width modulation (SHPWM) or comparison of triangular carrier high-frequency waveforms with a sinusoidal reference waveform. This chapter shows an asymmetric modulation method (AMM) hybrid modulation inverter with its working and performance verified through the simulation studies conducted in MATLAB Simulink software. A test for crucial voltage identification has also been carried out that recognizes the most important voltage source that must be maintained constant, else it would adversely effect the circuit’s operation.


2007 ◽  
Vol 4 (2) ◽  
pp. 171-187 ◽  
Author(s):  
S. Jeevananthan ◽  
R. Nandhakumar ◽  
P. Dananjayan

This paper deals with a novel natural sampled pulse width modulation (PWM) switching strategy for voltage source inverter through carrier modification. The proposed inverted sine carrier PWM (ISCPWM) method, which uses the conventional sinusoidal reference signal and an inverted sine carrier, has a better spectral quality and a higher fundamental component compared to the conventional sinusoidal PWM (SPWM) without any pulse dropping. The ISCPWM strategy enhances the fundamental output voltage particularly at lower modulation index ranges while keeping the total harmonic distortion (THD) lower without involving changes in device switching losses. The presented mathematical preliminaries for both SPWM and ISCPWM give a conceptual understanding and a comparison of the strategies. The detailed comparison of the harmonic content and fundamental component of the ISCPWM output for different values of modulation index with the results obtained for the SPWM is also presented. Finally, the proposed modulator has been implemented in field programmable gate array (FPGA- Xilinx Spartan 3) and tested with the proto-type inverter.


2021 ◽  
Author(s):  
Marcos Felix Aguirre

In the wake of the global energy crisis, the integration of renewable energy resources, energy storage devices, and electric vehicles into the electric grid has been of great interest towards replacing conventional, fossil-fuel-dependent energy resources. This thesis presents the circuit topology and a control strategy for a 250-W single-phase gridconnected dc-ac converter for photovoltaic (PV) solar applications. The converter is based on the dual active bridge (DAB) kernel employing a series-resonant link and a high-frequency isolation stage. For interfacing the 60-Hz ac grid with the 78-kHz resonant circuit, the converter utilizes a four-quadrant switch array that functions as an ac-ac stage. Therefore, a bipolar low-frequency voltage source, that is the grid voltage, is used to synthesize a symmetrical high-frequency voltage pulse-train for the resonant circuit. Thus, soft switching and the use of a compact ferrite-core transformer have been possible. Then, a fast current-control loop ensures that the converter injects a sinusoidal current in phase with the grid voltage, while a relatively slower feedback loop regulates the converter dc-side voltage, that is, the PV array voltage, at a desired value. To simulate the converter and to design the controllers, the thesis also presents nonlinear large-signal and linearized small-signal state-space averaged models. The performance of the converter is assessed through simulation studies conducted using the aforementioned averaged models, a detailed topological model in the PLECS software environment, and a prototype. Keywords: Photovoltaic, PV, Microinverter, Dual Active Bridge, Phase-shift Modulation, High Frequency Transformer


2021 ◽  
Vol 2107 (1) ◽  
pp. 012051
Author(s):  
M. Z. Aihsan ◽  
A. M. Yusof ◽  
Hasliza A Rahim ◽  
B. Ismail ◽  
W. A. Mustafa ◽  
...  

Abstract This article organized in two sections where it compares the performance of single-phase inverters using various types of inductors with differences modulation technique of pulse width modulation (PWM). Not all inductors perform the same function, even the inductance value is the same. The study will investigate the capability of each inductor on its performance to convert the unfiltered AC voltage into filtered sinusoidal AC voltage. The drum core and toroidal core inductors were used in this investigation. For both inductors, the performance will be analyzed based on Bipolar and Unipolar switching schemes in a single unit H-bridge circuit. The validation of results are through experimental assessment only and it will be evaluating the shape of sinusoidal AC voltage and the content of total harmonics distortion in the AC voltage for both inductors.


Author(s):  
Sreenivasappa Bhupasandra Veeranna ◽  
Udaykumar R Yaragatti ◽  
Abdul R Beig

The digital control of three-level voltage source inverter fed high power high performance ac drives has recently become a popular in industrial applications. In order to control such drives, the pulse width modulation algorithm needs to be implemented in the controller. In this paper, synchronized symmetrical bus-clamping pulse width modulation strategies are presented. These strategies have some practical advantages such as reduced average switching frequency, easy digital implementation, reduced switching losses and improved output voltage quality compared to conventional space vector pulse width modulation strategies. The operation of three level inverter in linear region is extended to overmodulation region. The performance is analyzed in terms THD and fundamental output voltage waveforms and is compared with conventional space vector PWM strategies and found that switching losses can be minimized using bus-clamping strategy compared to conventional space vector strategy. The proposed method is implemented using Motorola Power PC 8240 processor and verified on a constant v/f induction motor drive fed from IGBT based inverter.


2019 ◽  
Vol 8 (4) ◽  
pp. 7981-7986

Single phase capacitor run induction motor is necessary to operate meritoriously and enhance the power quality. AC voltage controller is utilized effectively for controlling the speed of the motor. It employs conventional TRIAC and sinusoidal pulse width modulation control. The performance parameters are total harmonic distortion, input power factor and efficiency are the main concern. The comparative analysis of the two methods was simulated using MATLAB Simulink platform. Speed control of capacitor run induction motor used in domestic and industrial applications.


In this paper, a modified structure of two-stage sepic based five-level T-type inverter is presented for photovoltaic applications. The proposed topology consists of a frond-end sepic converter cascaded with full bridge T-type inverter through a high-frequency transformer. The proposed topology owns the merits of high boost output voltage level, modularity, reduced device parts, and better quality of supply. Therefore, a detailed operation of the proposed topology and the level generations using sine pulse width modulation are presented. Finally, the performance of the proposed topology is validated through Matlab simulation and experimental prototype model results


2021 ◽  
Vol 9 (06) ◽  
pp. 663-672
Author(s):  
Anukriti Sharma ◽  
◽  
Navdeep Singh ◽  

This paper presents the performance analysis of proposed circuit of Single-Phase Reduced Order AC-AC Resonant Frequency Converter. AC-AC converter is minimized number of switches for multi-operation and resonant converter is converter work on the principle of ZCS (Zero Current Switching) and ZVS (Zero Voltage Switching) combining both topology, which provide better output with reduce THD and switching losses. A mathematical modeling is done for proper value of used parameters in converter. The output of converter is improved by applying Modulation technique in this converter we are using Trapezoidal Pulse Width Modulation (TPWM) for the better performance and control. THD of the converter is calculated by using MATLAB simulation software. MATALB simulation of AC –AC Resonate Frequency Converter is done by using MOSFET as switch.


Author(s):  
Taha Ahmed Hussein

<p>Selective harmonic elimination technique SHE is adopted in this work to reduce the harmonic contents in single phase cascaded multilevel inverter. The firing instants for the electronic switches MOSFETs in the inverter are calculated off line for five level to thirteen level inverter. An Arduino microcontroller is programmed to cope with different topologies of the multilevel inverter. The implemented multi-level (MLI) inverter results are compared with Simulink simulation program and are found very close to each other. SHE technique works at system frequency (50 Hz or 60 Hz) and the switching losses are very small. The sinusoidal pulse width modulation SPWM requires a carrier frequency not less 20 times the system frequency so SHE approach is found to be superior compared with SPWM. Also, SHE technique shows significant reduction in THD as the number of levels increased. Results for the output voltages and currents along with their frequency spectrum are shown and compared with traditional SPWM.</p>


Sign in / Sign up

Export Citation Format

Share Document