Review and comparison of high efficiency high power boost DC/DC converters for photovoltaic applications

2011 ◽  
Vol 59 (4) ◽  
pp. 499-506 ◽  
Author(s):  
J. Dawidziuk

Review and comparison of high efficiency high power boost DC/DC converters for photovoltaic applicationsRecent environmental issues have accelerated the use of more efficient and energy saving technologies in renewable energy systems. High power high efficiency boost DC/DC converters for the use in photovoltaic, fuel cell systems are discussed in this paper from the viewpoint of power losses and efficiency. State of the art converters with switching frequency within the range of 25 kHz with IGBTs to 100 kHz with power MOSFETs and the highest efficiency close to 98%, depending on the load conditions, is considered. A comparison and discussion of the highest efficiency high power DC/DC boost converters is also presented in this paper.

2011 ◽  
Vol 2011 (HITEN) ◽  
pp. 000152-000158
Author(s):  
J. Valle Mayorga ◽  
C. Gutshall ◽  
K. Phan ◽  
I. Escorcia ◽  
H. A. Mantooth ◽  
...  

SiC power semiconductors have the capability of greatly outperforming Si-based power devices. Faster switching and smaller on-state losses coupled with higher voltage blocking and temperature capabilities, make SiC a very attractive semiconductor for high performance, high power density power modules. However, the temperature capabilities and increased power density are fully utilized only when the gate driver is placed next to the SiC devices. This requires the gate driver to successfully operate under these extreme conditions with reduced or no heat sinking requirements, allowing the full realization of a high efficiency, high power density SiC power module. In addition, since SiC devices are usually connected in a half or full bridge configuration, the gate driver should provide electrical isolation between the high and low voltage sections of the driver itself. This paper presents a 225 degrees Celsius operable, Silicon-On-Insulator (SOI) high voltage isolated gate driver IC for SiC devices. The IC was designed and fabricated in a 1 μm, partially depleted, CMOS process. The presented gate driver consists of a primary and a secondary side which are electrically isolated by the use of a transformer. The gate driver IC has been tested at a switching frequency of 200 kHz at 225 degrees Celsius while exhibiting a dv/dt noise immunity of at least 45 kV/μs.


Energies ◽  
2020 ◽  
Vol 13 (21) ◽  
pp. 5645
Author(s):  
Hamed Mashinchi Maheri ◽  
Dmitri Vinnikov ◽  
Andrii Chub ◽  
Vadim Sidorov ◽  
Elizaveta Liivik

In this paper, the impact of transformer turns ratio on the performance of the quasi-Z-source galvanically isolated DC-DC converters is studied. Embedded buck–boost functionality enables these converters to regulate the input voltage and load in a wide range, which makes them suitable for such demanding application as photovoltaic microconverters. The isolation transformer here plays a central role as its turns ratio defines the point of transition between the boost and buck modes and overall capability of the converter to regulate the input voltage in a wide range at high efficiency. The studied quasi-Z-source galvanically isolated DC-DC converter is benchmarked in terms of power loss of components and weighted power conversion efficiency for three different turns ratios of isolation transformer to achieve the best and optimized turns ratio lead to the efficient operation. Operation in a wide range of input voltage at high efficiency is the main criterion for assessing the effect of turns ratio on the efficiency of the converter. The proposed loss model and theoretical predictions of the efficiency were validated with the help of a 300 W experimental prototype of the photovoltaic microconverter based on the quasi-Z-source galvanically isolated DC-DC converter topology.


2019 ◽  
Vol 25 (3) ◽  
pp. 4-9
Author(s):  
Michal Frivaldsky ◽  
Jan Morgos ◽  
Andrej Kanovsky

Dual interleaved LLC resonant converter with half bridge topology of main circuit characterized by high switching frequency (500 kHz), high power density (60 W/inch3) and high efficiency (above 96 %) over entire operational range (20 %–100 %) is described. Focus was given on the practical design of power converter, which will be able to fulfil requirements on wide load range operation characterized by upcoming normative. Since proposed topology is based on dual interleaved LLC converter, the resonant component´s critical tolerance was also investigated to secure reliable and optimal operational point. Consequently, proposals for elimination of intolerance negative impact are also described. The results of theoretical analysis were verified directly through experimental measurements. Experimental results are finally compared with upcoming industrial standard 80 Plus Titanium.


Energies ◽  
2019 ◽  
Vol 12 (10) ◽  
pp. 1991 ◽  
Author(s):  
Krzysztof Górecki ◽  
Kalina Detka

The paper presents the results of a computer simulation illustrating the influence of power losses in the core of an inductor based on the characteristics of buck and boost converters. In the computations, the authors’ model of power losses in the core is used. Correctness of this model is verified experimentally for three different magnetic materials. Computations are performed with the use of this model and the Excel software for inductors including cores made of ferrite, powdered iron, and nanocrystalline material in a wide range of load resistance, as well as input voltage of both the considered converters operating at different values of switching frequency. The obtained computation results show that power losses in the inductor core and watt-hour efficiency of converters strongly depend on the material used to make this core, in addition to the input voltage and parameters of the control signal and load resistance of the considered converters. The obtained results of watt-hour efficiency of the considered direct current (DC)–DC converters show that it changes up to 30 times in the considered ranges of the mentioned factors. In turn, in the same operating conditions, values of power losses in the considered cores change from a fraction of a watt to tens of watts. The paper also considers the issue of which material should be used to construct the inductor core in order to obtain the highest value of watt-hour efficiency at selected operation conditions of the considered converters.


2013 ◽  
Vol 765-767 ◽  
pp. 2140-2143
Author(s):  
Wei Sun

A novel Sagittarius automatic Pulsed I-V measurement system was developed. This new system eliminated the self-heating effect which affected static measurements of High Power MOSFETs using conventional methods. It provided the true output conductance and trans-conductance, solved the device modeling problems caused by negative output conductance of high power devices. The automation measurement function can fulfill the mass measurement requirements of semiconductor industry with high efficiency and accuracy.


1995 ◽  
Vol 05 (03) ◽  
pp. 503-521 ◽  
Author(s):  
LOURENCO MATAKAS ◽  
CATALIN BURLACU ◽  
EISUKE MASADA

Recently, there is an increased demand for high power, high performance converters for power system applications, motor drives, etc. The low switching frequency of the existing semiconductor power devices poses a severe limitation that can be overcome by the use of interconnected smaller power converters (multiconverter) with appropriate control. This paper gives an overview of the state of the art of multiconverters, followed by a comparison based on analytically calculated values of the spectra, RMS and peak values of their ripple currents, and the peak values of the transformer's flux. Special attention has been given to show that the transformerless parallel connection of converters is feasible and offers features such as simplicity, gracefully degrading operating, high reliability, easy expandability and easy maintenance.


2021 ◽  
Vol 13 (19) ◽  
pp. 10699
Author(s):  
Tohid Rahimi ◽  
Md Rabiul Islam ◽  
Hossein Gholizadeh ◽  
Saeed Mahdizadeh ◽  
Ebrahim Afjei

This paper introduces a novel topology of the proposed converter that has these merits: (i) the topology of the converter is based on conventional boost and buck-boost converters, which has caused its simplicity; (ii) the voltage gain of the converter has provided higher values by the lower value of the duty cycle; (iii) due to the use of high-efficiency conventional topologies in its structure, the efficiency of the converter keeps its high value for a great interval of duty cycle; (iv) besides the increase of the voltage gain, the current/voltage stresses of the semiconductors have been kept low; (v) the continuous input current of this converter reduces the current stress of the capacitor in the input filter. It is worth noting that the proposed converter has been discussed in both ideal and non-ideal modes. Moreover, the operation of the converter has been discussed in both continuous/discontinuous current modes. The advantages of the converter have been compared with recently suggested converters. In addition, the different features of the converter have been discussed for different conditions. In the small-signal analysis, the appropriate compensator has been designed. Finally, the simulation and experimental results have been reported for 90 W output power, 90 V output voltage, 3-times voltage gain, and 100 kHz switching frequency.


Sign in / Sign up

Export Citation Format

Share Document