scholarly journals Low-cost sensors for determining the impact of air quality components in workers’ health: protocol for a systematic review.

Author(s):  
Maria Latournerie ◽  
Denisse Bustos ◽  
Joana Guedes

Due to the disproportionate growth of the population, human needs have been changing drastically, thus breaking their expected balance with nature. Industrialization and demands of new technologies imply the application of processes that require more energy, which, used in an unsustainable way, contributes to a decrease of the air quality, affecting the quality of life and the variation in Earth's climate system. This has a serious impact on both people's health and national economies because of the increase of absenteeism and mortality rates of workers caused by diseases related to exposure to high amounts of pollutants. The increased tourism in coastal areas requires the efficient attendance of these needs as there is nowadays a great variety of activities that emit atmospheric pollutants in those areas (grills, recreational activities, transportation). A systematic review is proposed to identify the methods used in the monitoring and control of the amounts of outdoor air pollutants, specifically CO2 and PM 2.5, to determine the relationship between workers' exposure to the bad quality air in coastal areas during their working days and respiratory and cardiovascular diseases, that would allow creating programs and actions to reduce these negative effects. As a result, this systematic review protocol aims to define the criteria to develop research able to fulfill this purpose. It is based in the Preferred Reporting Items for Systematic Reviews and Meta-Analyses Protocols (PRISMA-P) Statement.

2018 ◽  
Author(s):  
Ashley M. Collier-Oxandale ◽  
Jacob Thorson ◽  
Hannah Halliday ◽  
Jana Milford ◽  
Michael Hannigan

Abstract. Volatile organic compounds (VOCs) present a unique challenge in air quality research given their importance to human and environmental health, and their complexity to monitor resulting from the number of possible sources and mixtures. New technologies, such as low-cost air quality sensors have the potential to support existing air quality measurement methods by providing high time and spatial resolution data. This higher resolution data could provide greater insight into specific events, sources, and local variability. Furthermore, given the potential for differences in selectivities for sensors, leveraging multiple sensors in an array format may even be able to provide insight into which VOCs or types of VOCs are present. During the FRAPPE/DISCOVER-AQ monitoring campaigns, our team was able to co-locate two sensor systems, using metal oxide (MOx) VOC sensors, with a proton-transfer-reaction mass spectrometer (PTR-MS) providing speciated VOC data. This dataset provided the opportunity to explore the ability of sensors to estimate specific VOCs and groups of VOCs in real-world conditions, e.g., dynamic temperature and humidity. Moreover, we were able to explore the impact of changing VOC compositions on sensor performance as well as the difference in selectivities of sensors in order to consider how this could be utilized. From this analysis, it seems that systems using multiple VOC sensors are able to provide VOC estimates at ambient levels for specific VOCs or groups of VOCs, it also seems that this performance is fairly robust to changing VOC mixtures, and it was confirmed that there are consistent and useful differences in selectivities between the two MOx sensors studied. While this study was fairly limited in scope, the results suggest that there is the potential for low-cost VOC sensors to support highly resolved, ambient hydrocarbon measurements. The availability of this technology could enhance research and monitoring for public health and communities impacted by air toxics, which in turn could support a better understanding of exposure and actions to reduce harmful exposure.


2019 ◽  
Vol 12 (3) ◽  
pp. 1441-1460 ◽  
Author(s):  
Ashley M. Collier-Oxandale ◽  
Jacob Thorson ◽  
Hannah Halliday ◽  
Jana Milford ◽  
Michael Hannigan

Abstract. Volatile organic compounds (VOCs) present a unique challenge in air quality research given their importance to human and environmental health, and their complexity to monitor resulting from the number of possible sources and mixtures. New technologies, such as low-cost air quality sensors, have the potential to support existing air quality measurement methods by providing data in high time and spatial resolution. These higher-resolution data could provide greater insight into specific events, sources, and local variability. Furthermore, given the potential for differences in selectivities for sensors, leveraging multiple sensors in an array format may even be able to provide insight into which VOCs or types of VOCs are present. During the FRAPPE and DISCOVER-AQ monitoring campaigns, our team was able to co-locate two sensor systems, using metal oxide (MOx) VOC sensors, with a proton-transfer-reaction quadrupole mass spectrometer (PTR-QMS) providing speciated VOC data. This dataset provided the opportunity to explore the ability of sensors to estimate specific VOCs and groups of VOCs in real-world conditions, e.g., dynamic temperature and humidity. Moreover, we were able to explore the impact of changing VOC compositions on sensor performance as well as the difference in selectivities of sensors in order to consider how this could be utilized. From this analysis, it seems that systems using multiple VOC sensors are able to provide VOC estimates at ambient levels for specific VOCs or groups of VOCs. It also seems that this performance is fairly robust in changing VOC mixtures, and it was confirmed that there are consistent and useful differences in selectivities between the two MOx sensors studied. While this study was fairly limited in scope, the results suggest that there is the potential for low-cost VOC sensors to support highly resolved ambient hydrocarbon measurements. The availability of this technology could enhance research and monitoring for public health and communities impacted by air toxics, which in turn could support a better understanding of exposure and actions to reduce harmful exposure.


Toxics ◽  
2021 ◽  
Vol 9 (6) ◽  
pp. 140
Author(s):  
Francesca Borghi ◽  
Andrea Spinazzè ◽  
Simone Mandaglio ◽  
Giacomo Fanti ◽  
Davide Campagnolo ◽  
...  

Recently, the need to assess personal exposure in different micro-environments has been highlighted. Further, estimating the inhaled dose of pollutants is considerably one of the most interesting parameters to be explored to complete the fundamental information obtained through exposure assessment, especially if associated with a dose-response approach. To analyze the main results obtained from the studies related to the estimation of the inhaled dose of pollutants in different micro-environments (environments in which an individual spends a part of his day), and to identify the influence of different parameters on it, a systematic review of the literature was performed. The principal outcomes from the considered studies outlined that (i) exposure concentration and residence time are among the most important parameters to be evaluated in the estimation of the inhaled dose, especially in transport environments. Further, (ii) the pulmonary ventilation rate can be of particular interest during active commuting because of its increase, which increases the inhalation of pollutants. From a methodological point of view, the advent of increasingly miniaturized, portable and low-cost technologies could favor these kinds of studies, both for the measurement of atmospheric pollutants and the real-time evaluation of physiological parameters used for estimation of the inhaled dose. The main results of this review also show some knowledge gaps. In particular, numerous studies have been conducted for the evaluation (in terms of personal exposure and estimation of the inhaled dose) of different PM fractions: other airborne pollutants, although harmful to human health, are less represented in studies of this type: for this reason, future studies should be conducted, also considering other air pollutants, not neglecting the assessment of exposure to PM. Moreover, many studies have been conducted indoors, where the population spends most of their daily time. However, it has been highlighted how particular environments, even if characterized by a shorter residence time, can contribute significantly to the dose of inhaled pollutants. These environments are, therefore, of particular importance and should be better evaluated in future studies, as well as occupational environments, where the work results in a high pulmonary ventilation rate. The attention of future studies should also be focused on these categories of subjects and occupational studies.


Sensors ◽  
2021 ◽  
Vol 21 (2) ◽  
pp. 357
Author(s):  
Pedro Moura ◽  
José Ignacio Moreno ◽  
Gregorio López López ◽  
Manuel Alvarez-Campana

University campuses are normally constituted of large buildings responsible for high energy demand, and are also important as demonstration sites for new technologies and systems. This paper presents the results of achieving energy sustainability in a testbed composed of a set of four buildings that constitute the Telecommunications Engineering School of the Universidad Politécnica de Madrid. In the paper, after characterizing the consumption of university buildings for a complete year, different options to achieve more sustainable use of energy are presented, considering the integration of renewable generation sources, namely photovoltaic generation, and monitoring and controlling electricity demand. To ensure the implementation of the desired monitoring and control, an internet of things (IoT) platform based on wireless sensor network (WSN) infrastructure was designed and installed. Such a platform supports a smart system to control the heating, ventilation, and air conditioning (HVAC) and lighting systems in buildings. Furthermore, the paper presents the developed IoT-based platform, as well as the implemented services. As a result, the paper illustrates how providing old existing buildings with the appropriate technology can contribute to the objective of transforming such buildings into nearly zero-energy buildings (nZEB) at a low cost.


Sensors ◽  
2021 ◽  
Vol 21 (10) ◽  
pp. 3338
Author(s):  
Ivan Vajs ◽  
Dejan Drajic ◽  
Nenad Gligoric ◽  
Ilija Radovanovic ◽  
Ivan Popovic

Existing government air quality monitoring networks consist of static measurement stations, which are highly reliable and accurately measure a wide range of air pollutants, but they are very large, expensive and require significant amounts of maintenance. As a promising solution, low-cost sensors are being introduced as complementary, air quality monitoring stations. These sensors are, however, not reliable due to the lower accuracy, short life cycle and corresponding calibration issues. Recent studies have shown that low-cost sensors are affected by relative humidity and temperature. In this paper, we explore methods to additionally improve the calibration algorithms with the aim to increase the measurement accuracy considering the impact of temperature and humidity on the readings, by using machine learning. A detailed comparative analysis of linear regression, artificial neural network and random forest algorithms are presented, analyzing their performance on the measurements of CO, NO2 and PM10 particles, with promising results and an achieved R2 of 0.93–0.97, 0.82–0.94 and 0.73–0.89 dependent on the observed period of the year, respectively, for each pollutant. A comprehensive analysis and recommendations on how low-cost sensors could be used as complementary monitoring stations to the reference ones, to increase spatial and temporal measurement resolution, is provided.


2021 ◽  
Author(s):  
Sarah Letaïef ◽  
Pierre Camps ◽  
Thierry Poidras ◽  
Patrick Nicol ◽  
Delphine Bosch ◽  
...  

<p>Numerous studies have already shown the possibility of tracing the sources, the<br>compositions, and the concentration of atmospheric pollutants deposited on plant<br>leaves. In environmental geochemistry, inter-element and isotope ratios from<br>chemical element assays have been used for these purposes. Alternatively,<br>environmental magnetism represents a quick and inexpensive asset that is<br>increasingly used as a relative indicator for concentrations of air pollutant on bio<br>accumulator surfaces such as plants. However, a fundamental issue is still pending:<br>Do plants in urban areas represent a sink for fine particles that is sufficiently effective<br>to improve air quality? This is a very topical issue because some studies have shown<br>that the foliage can trap fine particles by different dry deposition processes, while<br>other studies based on CFD models indicate that plant hedges in cities can hinder<br>the atmospheric dispersion of pollutants and therefore increase pollution at the level of<br>emission sources such as traffic. To date, no consensus was made because several<br>factors not necessary well known must be taken into account, such as, PM<br>concentration and size, prevailing wind, surface structures, epicuticular wax, to<br>mention just a few examples. A first step toward the understanding of the impact of<br>urban greens on air quality is the precise determination of the deposition velocity (Vd)<br>parameter. This latter is specific for each species and it is most of the time<br>underestimated in modeling-based studies by taking standard values.<br>In that perspective, we built a wind tunnel (6 m long, 86 cm wide and 86 cm high) to<br>perform analogical experiments on different endemic species. All parameters are<br>controlled, i.e, the wind speed, the nature and the injection time of pollutants (Gasoline<br>or Diesel exhausts, brakes or tires dust, etc…). We can provide the PM concentrations<br>upwind and downwind of natural reconstituted hedges by two dustmeters (LOACs -<br>MétéoModem). Beforehand, parameters such as the hedge resistance (%) or the leaf<br>area index (LAI) have been estimated for each studied specie to allow comparability<br>between plants removal potential. The interest would ultimately combine PM<br>concentration measured by size bins from the LOACs with magnetic measurements<br>(ARM, IRM100mT, IRM300mT and SIRM) of plant leaves. The idea is to check whether it<br>would be possible to precisely determine in situ the dust removal rate by urban greens<br>with environmental magnetism measurements. Up to now, we have carried out on<br>different endemic species such as Elaeagnus x ebbingei leaves and Mediterranean<br>pine needles, the results of which will be presented.</p>


2021 ◽  
Author(s):  
Jiyeon Yu ◽  
Angelica de Antonio ◽  
Elena Villalba-Mora

BACKGROUND eHealth and Telehealth play a crucial role in assisting older adults who visit hospitals frequently or who live in nursing homes and can benefit from staying at home while being cared for. Adapting to new technologies can be difficult for older people. Thus, to better apply these technologies to older adults’ lives, many studies have analyzed acceptance factors for this particular population. However, there is not yet a consensual framework to be used in further development and the search for solutions. OBJECTIVE This paper presents an Integrated Acceptance Framework (IAF) for the older user’s acceptance of eHealth, based on 43 studies selected through a systematic review. METHODS We conducted a four-step study. First, through a systematic review from 2010 to 2020 in the field of eHealth, the acceptance factors and basic data for analysis were extracted. Second, we carried out a thematic analysis to group the factors into themes to propose and integrated framework for acceptance. Third, we defined a metric to evaluate the impact of the factors addressed in the studies. Last, the differences amongst the important IAF factors were analyzed, according to the participants’ health conditions, verification time, and year. RESULTS Through the systematic review, 731 studies were founded in 5 major databases, resulting in 43 selected studies using the PRISMA methodology. First, the research methods and the acceptance factors for eHealth were compared and analyzed, extracting a total of 105 acceptance factors, which were grouped later, resulting in the Integrated Acceptance Framework. Five dimensions (i.e., personal, user-technology relational, technological, service-related, environmental) emerged with a total of 23 factors. Also, we assessed the quality of the evidence. And then, we conducted a stratification analysis to reveal the more appropriate factors depending on the health condition and the assessment time. Finally, we assess which are the factors and dimensions that are recently becoming more important. CONCLUSIONS The result of this investigation is a framework for conducting research on eHealth acceptance. To elaborately analyze the impact of the factors of the proposed framework, the criteria for evaluating the evidence from the studies that have extracted factors are presented. Through this process, the impact of each factor in the IAF has been presented, in addition to the framework proposal. Moreover, a meta-analysis of the current status of research is presented, highlighting the areas where specific measures are needed to facilitate e-Health acceptance.


Noise can be defined as an undesirable sound that pollutes the environment. If noise is continuous and exceeds certain levels, negative effects on health can be observed. In recent years, the impact of environmental noise (road traffic noise, railway traffic noise, air traffic noise and industrial noise) on human health has come under increasingly intense scrutiny. Noise can cause a number of negative effects on health that directly or indirectly affect humans. The occurrence of some certain and harmful health effects drives the onset of others and may contribute to the development of various diseases. Health is not only a state of physical well-being, but also mental well-being. Mental health primarily depends on the quality of life, which can be affected by various environmental factors, such as noise. An important aspect of fighting noise is the most effective protection of the population by avoiding sources of noise and reducing it. This can be achieved by introducing new technical solutions and new technologies, including devices that generate less noise. Another important measure is educating the society and influencing the change of individual and collective behavior, which may contribute to reducing the harmful factor, which is noise in human life, and minimize the resulting negative effects on health.


2020 ◽  
Author(s):  
Annalisa Di Bernardino ◽  
Anna Maria Iannarelli ◽  
Stefano Casadio ◽  
Gabriele Mevi ◽  
Monica Campanelli ◽  
...  

<p>Mesoscale meteorological phenomena, such as sea-land breeze regime, strongly impact meteorological conditions of coastal areas, affecting wind intensity, moisture, heat and momentum fluxes and polluted air masses dispersion. This effect must be considered in order to correct design urban spaces, predict the possible influence of land use change on air pollution and climate change and, consequently, improve the quality of life and urban comfort.</p><p>In recent years, it has been shown that the breeze regime does not only affect microclimatic conditions but also air quality in coastal areas, because of the mixing of different types of aerosols and condensable gases. Moreover, the advection of marine, colder and more humid air leads to the decrease of the boundary layer height and, consequently, to the increase of the surface concentration of locally emitted pollutants, that are trapped within the boundary layer itself.</p><p>The effect of breeze regime is particularly interesting in coastal cities, where the sea breeze entails large modification of physical, optical, chemical, and hygroscopic properties of the urban aerosol.</p><p>In this work, we developed an approach to determine the breeze effect on aerosol in correspondence of the BAQUNIN [1] Super-site urban location, in the centre of Rome, Italy. The city is about 28 km far from the Tyrrhenian coast and is often exposed to sea-breeze circulation and to extreme aerosol events [2] [3].</p><p>In-situ measurements obtained from different remote sensing instruments are used: (i) vertical profile of horizontal wind velocity and direction by means of SODAR wind profiler; (ii) moisture, air temperature and wind speed from ground-based meteorological station; (iii) aerosol optical depth (AOD), height and evolution of the Boundary Layer from Raman and elastic LIDAR; (iv) precipitable water, AOD, Ångström exponent (AE) and single-scattering albedo (SSA) from sun-photometer CIMEL [4], (v) AOD, AE and SSA from POM 01 L Prede sun-sky radiometer [5][6], (vi) superficial NO<sub>2</sub> and formaldehyde amounts from PANDORA spectrometer [7], (vii) particulate matter (PM<sub>2.5 </sub>and PM<sub>10</sub>) concentrations from ground-based air quality station.</p><p>The investigation is focused on several days, during summer of 2019, characterized by anemological breeze regime conditions.</p><p>In this study, we present preliminary results aimed to the in-depth analysis of the effects of the breeze regime on the optical properties of aerosols in coastal, urban environment and the impact of the aerosol vertical stratification on ground-level PM concentrations.</p><p> </p><p>References:</p><p>[1] BAQUNIN Boundary-layer Air Quality-analysis Using Network of Instruments, www.baqunin.eu</p><p>[2] Petenko I. et al. (2011) “Local circulation diurnal patterns and their relationship with large-scale flows in a coastal area of the Tyrrhenian sea”, Boundary-Layer Meteorology, 139:353-366.</p><p>[3] Ciardini V. et al. (2012) “Seasonal variability of tropospheric aerosols in Rome”, Atmospheric Research, 118:205-214.</p><p>[4] AERONET, https://aeronet.gsfc.nasa.gov/new_web/index.html</p><p>[5] EUROSKYRAD http://www.euroskyrad.net/</p><p>[6] Campanelli M. et al. (2019) “Aerosol optical characteristics in the urban area of Rome, Italy, and their impact on the UV index”, Atmospheric Measurement Techniques Discussion.</p><p>[7] PGN, https://www.pandonia-global-network.org/</p>


Sign in / Sign up

Export Citation Format

Share Document