scholarly journals RTHN: A RNN-Transformer Hierarchical Network for Emotion Cause Extraction

Author(s):  
Rui Xia ◽  
Mengran Zhang ◽  
Zixiang Ding

The emotion cause extraction (ECE) task aims at discovering the potential causes behind a certain emotion expression in a document. Techniques including rule-based methods, traditional machine learning methods and deep neural networks have been proposed to solve this task. However, most of the previous work considered ECE as a set of independent clause classification problems and ignored the relations between multiple clauses in a document. In this work, we propose a joint emotion cause extraction framework, named RNN-Transformer Hierarchical Network (RTHN), to encode and classify multiple clauses synchronously. RTHN is composed of a lower word-level encoder based on RNNs to encode multiple words in each clause, and an upper clause-level encoder based on Transformer to learn the correlation between multiple clauses in a document. We furthermore propose ways to encode the relative position and global predication information into Transformer that can capture the causality between clauses and make RTHN more efficient. We finally achieve the best performance among 12 compared systems and improve the F1 score of the state-of-the-art from 72.69% to 76.77%.

Algorithms ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 39
Author(s):  
Carlos Lassance ◽  
Vincent Gripon ◽  
Antonio Ortega

Deep Learning (DL) has attracted a lot of attention for its ability to reach state-of-the-art performance in many machine learning tasks. The core principle of DL methods consists of training composite architectures in an end-to-end fashion, where inputs are associated with outputs trained to optimize an objective function. Because of their compositional nature, DL architectures naturally exhibit several intermediate representations of the inputs, which belong to so-called latent spaces. When treated individually, these intermediate representations are most of the time unconstrained during the learning process, as it is unclear which properties should be favored. However, when processing a batch of inputs concurrently, the corresponding set of intermediate representations exhibit relations (what we call a geometry) on which desired properties can be sought. In this work, we show that it is possible to introduce constraints on these latent geometries to address various problems. In more detail, we propose to represent geometries by constructing similarity graphs from the intermediate representations obtained when processing a batch of inputs. By constraining these Latent Geometry Graphs (LGGs), we address the three following problems: (i) reproducing the behavior of a teacher architecture is achieved by mimicking its geometry, (ii) designing efficient embeddings for classification is achieved by targeting specific geometries, and (iii) robustness to deviations on inputs is achieved via enforcing smooth variation of geometry between consecutive latent spaces. Using standard vision benchmarks, we demonstrate the ability of the proposed geometry-based methods in solving the considered problems.


2021 ◽  
Vol 42 (12) ◽  
pp. 124101
Author(s):  
Thomas Hirtz ◽  
Steyn Huurman ◽  
He Tian ◽  
Yi Yang ◽  
Tian-Ling Ren

Abstract In a world where data is increasingly important for making breakthroughs, microelectronics is a field where data is sparse and hard to acquire. Only a few entities have the infrastructure that is required to automate the fabrication and testing of semiconductor devices. This infrastructure is crucial for generating sufficient data for the use of new information technologies. This situation generates a cleavage between most of the researchers and the industry. To address this issue, this paper will introduce a widely applicable approach for creating custom datasets using simulation tools and parallel computing. The multi-I–V curves that we obtained were processed simultaneously using convolutional neural networks, which gave us the ability to predict a full set of device characteristics with a single inference. We prove the potential of this approach through two concrete examples of useful deep learning models that were trained using the generated data. We believe that this work can act as a bridge between the state-of-the-art of data-driven methods and more classical semiconductor research, such as device engineering, yield engineering or process monitoring. Moreover, this research gives the opportunity to anybody to start experimenting with deep neural networks and machine learning in the field of microelectronics, without the need for expensive experimentation infrastructure.


Information ◽  
2019 ◽  
Vol 10 (3) ◽  
pp. 98 ◽  
Author(s):  
Tariq Ahmad ◽  
Allan Ramsay ◽  
Hanady Ahmed

Assigning sentiment labels to documents is, at first sight, a standard multi-label classification task. Many approaches have been used for this task, but the current state-of-the-art solutions use deep neural networks (DNNs). As such, it seems likely that standard machine learning algorithms, such as these, will provide an effective approach. We describe an alternative approach, involving the use of probabilities to construct a weighted lexicon of sentiment terms, then modifying the lexicon and calculating optimal thresholds for each class. We show that this approach outperforms the use of DNNs and other standard algorithms. We believe that DNNs are not a universal panacea and that paying attention to the nature of the data that you are trying to learn from can be more important than trying out ever more powerful general purpose machine learning algorithms.


Author(s):  
Vikas Verma ◽  
Alex Lamb ◽  
Juho Kannala ◽  
Yoshua Bengio ◽  
David Lopez-Paz

We introduce Interpolation Consistency Training (ICT), a simple and computation efficient algorithm for training Deep Neural Networks in the semi-supervised learning paradigm. ICT encourages the prediction at an interpolation of unlabeled points to be consistent with the interpolation of the predictions at those points. In classification problems, ICT moves the decision boundary to low-density regions of the data distribution. Our experiments show that ICT achieves state-of-the-art performance when applied to standard neural network architectures on the CIFAR-10 and SVHN benchmark dataset.


IoT ◽  
2021 ◽  
Vol 2 (2) ◽  
pp. 222-235
Author(s):  
Guillaume Coiffier ◽  
Ghouthi Boukli Hacene ◽  
Vincent Gripon

Deep Neural Networks are state-of-the-art in a large number of challenges in machine learning. However, to reach the best performance they require a huge pool of parameters. Indeed, typical deep convolutional architectures present an increasing number of feature maps as we go deeper in the network, whereas spatial resolution of inputs is decreased through downsampling operations. This means that most of the parameters lay in the final layers, while a large portion of the computations are performed by a small fraction of the total parameters in the first layers. In an effort to use every parameter of a network at its maximum, we propose a new convolutional neural network architecture, called ThriftyNet. In ThriftyNet, only one convolutional layer is defined and used recursively, leading to a maximal parameter factorization. In complement, normalization, non-linearities, downsamplings and shortcut ensure sufficient expressivity of the model. ThriftyNet achieves competitive performance on a tiny parameters budget, exceeding 91% accuracy on CIFAR-10 with less than 40 k parameters in total, 74.3% on CIFAR-100 with less than 600 k parameters, and 67.1% On ImageNet ILSVRC 2012 with no more than 4.15 M parameters. However, the proposed method typically requires more computations than existing counterparts.


2021 ◽  
Vol 4 ◽  
Author(s):  
Felix Hensel ◽  
Michael Moor ◽  
Bastian Rieck

The last decade saw an enormous boost in the field of computational topology: methods and concepts from algebraic and differential topology, formerly confined to the realm of pure mathematics, have demonstrated their utility in numerous areas such as computational biology personalised medicine, and time-dependent data analysis, to name a few. The newly-emerging domain comprising topology-based techniques is often referred to as topological data analysis (TDA). Next to their applications in the aforementioned areas, TDA methods have also proven to be effective in supporting, enhancing, and augmenting both classical machine learning and deep learning models. In this paper, we review the state of the art of a nascent field we refer to as “topological machine learning,” i.e., the successful symbiosis of topology-based methods and machine learning algorithms, such as deep neural networks. We identify common threads, current applications, and future challenges.


2020 ◽  
Author(s):  
Thomas R. Lane ◽  
Daniel H. Foil ◽  
Eni Minerali ◽  
Fabio Urbina ◽  
Kimberley M. Zorn ◽  
...  

<p>Machine learning methods are attracting considerable attention from the pharmaceutical industry for use in drug discovery and applications beyond. In recent studies we have applied multiple machine learning algorithms, modeling metrics and in some cases compared molecular descriptors to build models for individual targets or properties on a relatively small scale. Several research groups have used large numbers of datasets from public databases such as ChEMBL in order to evaluate machine learning methods of interest to them. The largest of these types of studies used on the order of 1400 datasets. We have now extracted well over 5000 datasets from CHEMBL for use with the ECFP6 fingerprint and comparison of our proprietary software Assay Central<sup>TM</sup> with random forest, k-Nearest Neighbors, support vector classification, naïve Bayesian, AdaBoosted decision trees, and deep neural networks (3 levels). Model performance <a>was</a> assessed using an array of five-fold cross-validation metrics including area-under-the-curve, F1 score, Cohen’s kappa and Matthews correlation coefficient. <a>Based on ranked normalized scores for the metrics or datasets all methods appeared comparable while the distance from the top indicated Assay Central<sup>TM</sup> and support vector classification were comparable. </a>Unlike prior studies which have placed considerable emphasis on deep neural networks (deep learning), no advantage was seen in this case where minimal tuning was performed of any of the methods. If anything, Assay Central<sup>TM</sup> may have been at a slight advantage as the activity cutoff for each of the over 5000 datasets representing over 570,000 unique compounds was based on Assay Central<sup>TM</sup>performance, but support vector classification seems to be a strong competitor. We also apply Assay Central<sup>TM</sup> to prospective predictions for PXR and hERG to further validate these models. This work currently appears to be the largest comparison of machine learning algorithms to date. Future studies will likely evaluate additional databases, descriptors and algorithms, as well as further refining methods for evaluating and comparing models. </p><p><b> </b></p>


2022 ◽  
Vol 54 (8) ◽  
pp. 1-36
Author(s):  
Xingwei Zhang ◽  
Xiaolong Zheng ◽  
Wenji Mao

Deep neural networks (DNNs) have been verified to be easily attacked by well-designed adversarial perturbations. Image objects with small perturbations that are imperceptible to human eyes can induce DNN-based image class classifiers towards making erroneous predictions with high probability. Adversarial perturbations can also fool real-world machine learning systems and transfer between different architectures and datasets. Recently, defense methods against adversarial perturbations have become a hot topic and attracted much attention. A large number of works have been put forward to defend against adversarial perturbations, enhancing DNN robustness against potential attacks, or interpreting the origin of adversarial perturbations. In this article, we provide a comprehensive survey on classical and state-of-the-art defense methods by illuminating their main concepts, in-depth algorithms, and fundamental hypotheses regarding the origin of adversarial perturbations. In addition, we further discuss potential directions of this domain for future researchers.


Author(s):  
Ildar Rakhmatulin

More than 700 thousand human deaths from mosquito bites are observed annually in the world. It is more than 2 times the number of annual murders in the world. In this regard, the invention of new more effective methods of protection against mosquitoes is necessary. In this article for the first time, comprehensive studies of mosquito neutralization using machine vision and a 1 W power laser are considered. Developed laser installation with Raspberry Pi that changing the direction of the laser with a galvanometer. We developed a program for mosquito tracking in real. The possibility of using deep neural networks, Haar cascades, machine learning for mosquito recognition was considered. We considered in detail the classification problems of mosquitoes in images. A recommendation is given for the implementation of this device based on a microcontroller for subsequent use as part of an unmanned aerial vehicle. Any harmful insects in the fields can be used as objects for control.


Author(s):  
А.И. Сотников

Прогнозирование временных рядов стало очень интенсивной областью исследований, число которых в последние годы даже увеличивается. Глубокие нейронные сети доказали свою эффективность и достигают высокой точности во многих областях применения. По этим причинам в настоящее время они являются одним из наиболее широко используемых методов машинного обучения для решения проблем, связанных с большими данными. Time series forecasting has become a very intensive area of research, the number of which has even increased in recent years. Deep neural networks have been proven to be effective and achieve high accuracy in many applications. For these reasons, they are currently one of the most widely used machine learning methods for solving big data problems.


Sign in / Sign up

Export Citation Format

Share Document