scholarly journals Meta Segmentation Network for Ultra-Resolution Medical Images

Author(s):  
Tong Wu ◽  
Bicheng Dai ◽  
Shuxin Chen ◽  
Yanyun Qu ◽  
Yuan Xie

Despite recent great progress on semantic segmentation, there still exist huge challenges in medical ultra-resolution image segmentation. The methods based on multi-branch structure can make a good balance between computational burdens and segmentation accuracy. However, the fusion structure in these methods require to be designed elaborately to achieve desirable result, which leads to model redundancy. In this paper, we propose Meta Segmentation Network (MSN) to solve this challenging problem. With the help of meta-learning, the fusion module of MSN is quite simple but effective. MSN can fast generate the weights of fusion layers through a simple meta-learner, requiring only a few training samples and epochs to converge. In addition, to avoid learning all branches from scratch, we further introduce a particular weight sharing mechanism to realize a fast knowledge adaptation and share the weights among multiple branches, resulting in the performance improvement and significant parameters reduction. The experimental results on two challenging ultra-resolution medical datasets BACH and ISIC show that MSN achieves the best performance compared with the state-of-the-art approaches.

2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
Zhongmin Liu ◽  
Zhicai Chen ◽  
Zhanming Li ◽  
Wenjin Hu

In recent years, techniques based on the deep detection model have achieved overwhelming improvements in the accuracy of detection, which makes them being the most adapted for the applications, such as pedestrian detection. However, speed and accuracy are a pair of contradictions that always exist and have long puzzled researchers. How to achieve the good trade-off between them is a problem we must consider while designing the detectors. To this end, we employ the general detector YOLOv2, a state-of-the-art method in the general detection tasks, in the pedestrian detection. Then we modify the network parameters and structures, according to the characteristics of the pedestrians, making this method more suitable for detecting pedestrians. Experimental results in INRIA pedestrian detection dataset show that it has a fairly high detection speed with a small precision gap compared with the state-of-the-art pedestrian detection methods. Furthermore, we add weak semantic segmentation networks after shared convolution layers to illuminate pedestrians and employ a scale-aware structure in our model according to the characteristics of the wide size range in Caltech pedestrian detection dataset, which make great progress under the original improvement.


Author(s):  
Yan Huang ◽  
Yang Long ◽  
Liang Wang

Although image and sentence matching has been widely studied, its intrinsic few-shot problem is commonly ignored, which has become a bottleneck for further performance improvement. In this work, we focus on this challenging problem of few-shot image and sentence matching, and propose a Gated Visual-Semantic Embedding (GVSE) model to deal with it. The model consists of three corporative modules in terms of uncommon VSE, common VSE, and gated metric fusion. The uncommon VSE exploits external auxiliary resources to extract generic features for representing uncommon instances and words in images and sentences, and then integrates them by modeling their semantic relation to obtain global representations for association analysis. To better model other common instances and words in rest content of images and sentences, the common VSE learns their discriminative representations directly from scratch. After obtaining two similarity metrics from the two VSE modules with different advantages, the gated metric fusion module adaptively fuses them by automatically balancing their relative importance. Based on the fused metric, we perform extensive experiments in terms of few-shot and conventional image and sentence matching, and demonstrate the effectiveness of the proposed model by achieving the state-of-the-art results on two public benchmark datasets.


2020 ◽  
Vol 34 (07) ◽  
pp. 10762-10769
Author(s):  
Junsong Fan ◽  
Zhaoxiang Zhang ◽  
Tieniu Tan ◽  
Chunfeng Song ◽  
Jun Xiao

Weakly supervised semantic segmentation with only image-level labels saves large human effort to annotate pixel-level labels. Cutting-edge approaches rely on various innovative constraints and heuristic rules to generate the masks for every single image. Although great progress has been achieved by these methods, they treat each image independently and do not take account of the relationships across different images. In this paper, however, we argue that the cross-image relationship is vital for weakly supervised segmentation. Because it connects related regions across images, where supplementary representations can be propagated to obtain more consistent and integral regions. To leverage this information, we propose an end-to-end cross-image affinity module, which exploits pixel-level cross-image relationships with only image-level labels. By means of this, our approach achieves 64.3% and 65.3% mIoU on Pascal VOC 2012 validation and test set respectively, which is a new state-of-the-art result by only using image-level labels for weakly supervised semantic segmentation, demonstrating the superiority of our approach.


2012 ◽  
Vol 3 (2) ◽  
pp. 343-346
Author(s):  
Adabala Venkata Srinivasa Rao ◽  
D R Sandeep ◽  
V B Sandeep ◽  
S Dhanam Jaya

Recognition of Indian language scripts is a challenging problem. Work for the development of complete OCR systems for Indian language scripts is still in infancy. Complete OCR systems have recently been developed for Devanagri and Bangla scripts. Research in the field of recognition of Telugu script faces major problems mainly related to the touching and overlapping of characters. Segmentation of touching Telugu characters is a difficult task for recognizing individual characters. In this paper, the proposed algorithm is for the segmentation of  touching Hand written Telugu characters. The proposed method using Drop-fall algorithm is based on the moving of a marble on either side of the touching characters for selection of the point from where the cutting of the fused components should take place. This method improvers the segmentation accuracy higher than the existing one.


2021 ◽  
Vol 11 (15) ◽  
pp. 6975
Author(s):  
Tao Zhang ◽  
Lun He ◽  
Xudong Li ◽  
Guoqing Feng

Lipreading aims to recognize sentences being spoken by a talking face. In recent years, the lipreading method has achieved a high level of accuracy on large datasets and made breakthrough progress. However, lipreading is still far from being solved, and existing methods tend to have high error rates on the wild data and have the defects of disappearing training gradient and slow convergence. To overcome these problems, we proposed an efficient end-to-end sentence-level lipreading model, using an encoder based on a 3D convolutional network, ResNet50, Temporal Convolutional Network (TCN), and a CTC objective function as the decoder. More importantly, the proposed architecture incorporates TCN as a feature learner to decode feature. It can partly eliminate the defects of RNN (LSTM, GRU) gradient disappearance and insufficient performance, and this yields notable performance improvement as well as faster convergence. Experiments show that the training and convergence speed are 50% faster than the state-of-the-art method, and improved accuracy by 2.4% on the GRID dataset.


Author(s):  
Hussein Mohammed ◽  
Volker Märgner ◽  
Giovanni Ciotti

AbstractAutomatic pattern detection has become increasingly important for scholars in the humanities as the number of manuscripts that have been digitised has grown. Most of the state-of-the-art methods used for pattern detection depend on the availability of a large number of training samples, which are typically not available in the humanities as they involve tedious manual annotation by researchers (e.g. marking the location and size of words, drawings, seals and so on). This makes the applicability of such methods very limited within the field of manuscript research. We propose a learning-free approach based on a state-of-the-art Naïve Bayes Nearest-Neighbour classifier for the task of pattern detection in manuscript images. The method has already been successfully applied to an actual research question from South Asian studies about palm-leaf manuscripts. Furthermore, state-of-the-art results have been achieved on two extremely challenging datasets, namely the AMADI_LontarSet dataset of handwriting on palm leaves for word-spotting and the DocExplore dataset of medieval manuscripts for pattern detection. A performance analysis is provided as well in order to facilitate later comparisons by other researchers. Finally, an easy-to-use implementation of the proposed method is developed as a software tool and made freely available.


Author(s):  
My Kieu ◽  
Andrew D. Bagdanov ◽  
Marco Bertini

Pedestrian detection is a canonical problem for safety and security applications, and it remains a challenging problem due to the highly variable lighting conditions in which pedestrians must be detected. This article investigates several domain adaptation approaches to adapt RGB-trained detectors to the thermal domain. Building on our earlier work on domain adaptation for privacy-preserving pedestrian detection, we conducted an extensive experimental evaluation comparing top-down and bottom-up domain adaptation and also propose two new bottom-up domain adaptation strategies. For top-down domain adaptation, we leverage a detector pre-trained on RGB imagery and efficiently adapt it to perform pedestrian detection in the thermal domain. Our bottom-up domain adaptation approaches include two steps: first, training an adapter segment corresponding to initial layers of the RGB-trained detector adapts to the new input distribution; then, we reconnect the adapter segment to the original RGB-trained detector for final adaptation with a top-down loss. To the best of our knowledge, our bottom-up domain adaptation approaches outperform the best-performing single-modality pedestrian detection results on KAIST and outperform the state of the art on FLIR.


2021 ◽  
Vol 40 (3) ◽  
pp. 1-13
Author(s):  
Lumin Yang ◽  
Jiajie Zhuang ◽  
Hongbo Fu ◽  
Xiangzhi Wei ◽  
Kun Zhou ◽  
...  

We introduce SketchGNN , a convolutional graph neural network for semantic segmentation and labeling of freehand vector sketches. We treat an input stroke-based sketch as a graph with nodes representing the sampled points along input strokes and edges encoding the stroke structure information. To predict the per-node labels, our SketchGNN uses graph convolution and a static-dynamic branching network architecture to extract the features at three levels, i.e., point-level, stroke-level, and sketch-level. SketchGNN significantly improves the accuracy of the state-of-the-art methods for semantic sketch segmentation (by 11.2% in the pixel-based metric and 18.2% in the component-based metric over a large-scale challenging SPG dataset) and has magnitudes fewer parameters than both image-based and sequence-based methods.


Energies ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3800
Author(s):  
Sebastian Krapf ◽  
Nils Kemmerzell ◽  
Syed Khawaja Haseeb Khawaja Haseeb Uddin ◽  
Manuel Hack Hack Vázquez ◽  
Fabian Netzler ◽  
...  

Roof-mounted photovoltaic systems play a critical role in the global transition to renewable energy generation. An analysis of roof photovoltaic potential is an important tool for supporting decision-making and for accelerating new installations. State of the art uses 3D data to conduct potential analyses with high spatial resolution, limiting the study area to places with available 3D data. Recent advances in deep learning allow the required roof information from aerial images to be extracted. Furthermore, most publications consider the technical photovoltaic potential, and only a few publications determine the photovoltaic economic potential. Therefore, this paper extends state of the art by proposing and applying a methodology for scalable economic photovoltaic potential analysis using aerial images and deep learning. Two convolutional neural networks are trained for semantic segmentation of roof segments and superstructures and achieve an Intersection over Union values of 0.84 and 0.64, respectively. We calculated the internal rate of return of each roof segment for 71 buildings in a small study area. A comparison of this paper’s methodology with a 3D-based analysis discusses its benefits and disadvantages. The proposed methodology uses only publicly available data and is potentially scalable to the global level. However, this poses a variety of research challenges and opportunities, which are summarized with a focus on the application of deep learning, economic photovoltaic potential analysis, and energy system analysis.


2021 ◽  
Vol 15 (6) ◽  
pp. 1-21
Author(s):  
Huandong Wang ◽  
Yong Li ◽  
Mu Du ◽  
Zhenhui Li ◽  
Depeng Jin

Both app developers and service providers have strong motivations to understand when and where certain apps are used by users. However, it has been a challenging problem due to the highly skewed and noisy app usage data. Moreover, apps are regarded as independent items in existing studies, which fail to capture the hidden semantics in app usage traces. In this article, we propose App2Vec, a powerful representation learning model to learn the semantic embedding of apps with the consideration of spatio-temporal context. Based on the obtained semantic embeddings, we develop a probabilistic model based on the Bayesian mixture model and Dirichlet process to capture when , where , and what semantics of apps are used to predict the future usage. We evaluate our model using two different app usage datasets, which involve over 1.7 million users and 2,000+ apps. Evaluation results show that our proposed App2Vec algorithm outperforms the state-of-the-art algorithms in app usage prediction with a performance gap of over 17.0%.


Sign in / Sign up

Export Citation Format

Share Document