scholarly journals Hydrogeological System of Injana Formation in Salahaddin Governorate/ Iraq

2020 ◽  
pp. 2628-2639
Author(s):  
Mayyadah Ahmed Abdullah ◽  
Yaseen Saleh Kareem ◽  
Sabbar Abdullah Saleh

Injana Formation is the most extended geological formation in Salahaddin Governorate/ Iraq. About 10% of the studied area is covered by the outcrops of the formation as a recharge area. The formation is a subsurface within the unsaturated zone in 5% of the total studied area, while it exists within the saturated zone in about 85%; it is a major confined groundwater aquifer. Therefore, the hydrogeological system of the layers needs to be re-evaluated to describe the successions of aquifers and confining layers and their relation with each other. The lithology, depths, water table, saturated thickness, hydraulic characteristics of the aquifers, and the lateral and vertical variations of these characteristics were adopted to classify the hydrogeological system. The lithological composition is mainly composed of alternating successions of claystone, siltstone and sandstone with some differentiation within the studied area. The Quaternary and, occasionally, the Mukdadiya Formations are dry or of secondary aquifer, except in limited areas of the governorate. Injana Formation represents the major upper aquifer in the area, especially in the western bank of Tigris River. The outcrops of the formation are adjacent to Makhul and Hamrin anticlines; while Al-Tharthar valley represents a recharge area for the groundwater. In the remaining parts of the studied area, the formation represents the main deeper of a confined to semi-confined groundwater aquifer. The general direction of the groundwater movement in this hydrogeological system is towards the discharge area represented by Tigris River and Tharthar Lake, which is compatible with the topographic slope. The formation is classified as a multi-layer aquifer hydrogeological system.

Author(s):  
A. A. Loktiev

A mathematical model of the temperature field was constructed and the temperature values for hypsometric levels of 1000, 2000 and 3000 m were calculated. for these hypsometric levels, as well as a map of the isothermal surface +50 ºC. Working with this program involves the construction of digital models of the surface, ancillary operations with them and visualization of surfaces. The digital model of the surface has the form of values in the nodes of a rectangular regular grid, the dimension of which depends on the specific problem to be solved. The efficiency of the program of interpolation of two-dimensional functions is determined by the following aspects: a set of various interpolation methods; the ability of the researcher to control the various parameters of these methods; availability of means of an estimation of accuracy and reliability of the constructed surface; the opportunity to clarify the result based on the personal experience of the expert in view of various additional factors that could not be depicted as source data. It is confirmed that the patterns of distribution of the natural thermal field in the upper part of the earth’s crust are due to a number of reasons, the main of which are the lithological composition of rocks, features of tectonic structure and the nature of groundwater movement. As a result of the analysis of graphic constructions, a sharp decrease in the subsoil warming towards the Carpathian folded structure was witnessed. It has been scientifically proven that the subsoil warming within the Mukachevo basin is much higher than within the Solotvyno basin. The confinement of geothermal anomalies to zones of intensive development of deep faults has been confirmed mathematically and experimentally. Based on this feature, it can be argued that the presence of positive geothermal anomalies is a criterion of gas bearing capacity for predicting deposits within local defiection objects.


Author(s):  
Muhammad Kurniawan Alfadli ◽  
Nanda Natasia

Indonesian water consumption is influenced by the people growth. One of Water consumption fulfilment by groundwater aquifer. Bandorasawetan is one of the areas which predicted have proper potential due to located in East of Mt. Ceremai that predicted recharge area. Based on regional geological data, Bandorasawetan is an undifferentiated young volcanic product which consists of lava, breccia, lapilli, and tuffaceous sand. Geophysics method for groundwater prediction is 2-D geoelectrical with Wenner – Schlumberger configuration. The result of acquisition is obtained resistivity value from 0 - >1000 Ohm. m. Interpretation from data distribution is consist of two resistivity range that describes lithology on the research area, such as: 0 – 150 Ohm.m contributed as aquiqlud with tuffaceous sand lithology and > 150 Ohm.m interpreted as volcanic breccia lithology. Volcanic breccia has a role as aquifer in study area, the conclusion is distribution of resistivity value with range > 150 Ohm.m be the reference to developing groundwater resource in study area. Depth of aquifer is varying, deeper to the east. In Line – 1, depth of the aquifer is 48 meters and in Line – 2, depth of aquifer be 60 meters.


2021 ◽  
Vol 930 (1) ◽  
pp. 012058
Author(s):  
A M W Bukhari ◽  
H Hendrayana ◽  
H Setiawan

Abstract There are several areas with groundwater potential in Timor island, one of which is the Raimanuk and its surrounding area. This study aims to determine the hydrogeological system in the Raimanuk and its surrounding area. The hydrogeological system is determined by the geological conditions, geomorphology, lithology, and groundwater flow patterns. Geological conditions and groundwater flow patterns are provided by conducting a field investigation. Twenty shallow wells and four springs were measured to provide the groundwater contour. The geoelectrical survey was conducted at eleven points to analyze subsurface lithology. The results show that the geology of the study area is dominated by alluvium (west area), carbonate siltstone, and crystalline limestone (middle to the east area). There are two types of aquifers in the study area: unconfined aquifers and confined aquifers with gravel sandstone lithology. The groundwater flow pattern shows that the groundwater movement is from the east to the southwest. Moreover, the groundwater also moved from the northern, southern, and western of the study area. It is implied that the aquifer’s shape at the Raimanuk area is formed as a bowl-like shape influenced by the geological, geomorphological conditions.


2015 ◽  
Vol 76 (15) ◽  
Author(s):  
Fathin Ayuni Azizan ◽  
Mohamed Azwan Mohamed Zawawi ◽  
Ahmad Fikri Abdullah

A 2D surface electrical resistivity is one of non-destructive methods to investigate groundwater. In this study, 2D resistivity method was used to produce subsurface imaging profiles which are known as ERT (Electrical Resistivity Tomography) at Block C, Sawah Sempadan, Tanjung Karang, Selangor. These ERT profiles were then used to create 3D model view of potential aquifer at the study area. Overall, there were 3 ERT profiles of 1600m for major survey lines and 6 ERT profiles of 400m for minor lines. ERT profiles were then compared to lithology log from nearby tube wells of same geological formation in order to locate potential aquifer location in these profiles. Results show that there were 7 locations of identified potential aquifer in this study area. Later, the resistivity data were added with longitude and latitude data before imported into Voxler to achieve the objective of the study. The 3D model view of skeleton shape was productively built in Voxler as it visibly illustrates the whole subsurface profiles of study area. Locations of potential aquifers were identified in this 3D model view to show the exact location and depth of each potential aquifer.


2021 ◽  
Vol 39 (7) ◽  
pp. 1041-1051
Author(s):  
Mustafa T. Al-Tahir ◽  
Thair S. Khayyun

The research studies the effect of change of the Tigris  River's surface stage on groundwater movement by building a three-dimension model  using GMS model for a catchment area in Baghdad city. The model is built and calibrated by using the information of 16 wells for the year 2015 . Three scenarios of river elevation stage are used when the stage  elevation is maximum, average and minimum. The movement of groundwater according to the results was from the north-west to the Tigris River location. Also, the results show the velocity of groundwater in case of the minimum water surface level stage is greater than the other cases because of the high hydraulic gradient. The velocity of groundwater in layer one for all cases is very slow because of the low permeability.


2016 ◽  
Vol 5 (4) ◽  
Author(s):  
Saad Younes Ghoubachi

The present study focused on investigating the impact of geological setting on the groundwater occurrences of the Lower Cretaceous sandstone aquifer (Malha). The Lower Cretaceous sandstone aquifer is subdivided into 3 units according to their lithological characters for the first time in this present work. The study area is dissected by normal faults with their downthrown sides due north direction. The groundwater flows from southeast recharge area (outcrop) to the northwest direction with an average hydraulic gradient of 0.0035. The hydraulic parameters of the Lower Cretaceous sandstone aquifer were determined and evaluated through 7 pumping tests carried out on productive wells. The Lower Cretaceous aquifer in the study area is characterized by moderate to high potential. The calculated groundwater volume of the Lower Cretaceous aquifer (6300 km2) in the study area attains about 300 bcm, while the estimated recharge to the same aquifer reaches about 44,500 m3/day with an annual recharge of 16 mcm/year. Expended Durov diagram plot revealed that the groundwater has been evolved from Mg-SO4 and Mg-Cl dissolution area types that eventually reached a final stage of evolution represented by a Na-Cl water type. This diagram helps also in identifying groundwater flow direction. The groundwater salinity ranges from 1082 ppm (Shaira) to 1719 ppm (Nakhl), in the direction of groundwater movement towards north.


2020 ◽  
Vol 5 (1) ◽  
pp. 1 ◽  
Author(s):  
Mohammad Ibrahim Khalil

Vertical electrical sounding has been carried out in a coastal area in the southern part of Bangladesh to locate the groundwater aquifers containing fresh water. The Interpex1X1Dv3 computer program was used to process the field apparent resistivity data sets obtained from the vertical electrical sounding.  Geoelectric layers were identified in the context of resistivity and thickness from the vertical electrical sounding data. From the initial parameters layered model was achieved using the inversion technique. Correlation of the obtained layer model with a nearby lithologic log concludes the groundwater aquifer system of the area. From the electrical properties of the subsurface layers, water bearing layers were detected and characterized. Very fine sand geoelectric layer with a thickness varying from 20 to 143 meters is an upper aquifer and has 0.66–14.02 Ωm apparent resistivity value. Fine sand geoelectric layer with 0.21-5.99 Ωm apparent resistivity value is lower aquifer with maximum thickness ~250 meters. From the resistivity value, it is observed that the upper aquifer contains saline to brackish-fresh water while the resistivity value of the lower aquifer indicates that it contains saline water. The water quality of the upper zone varies geographically from the southern to the northern part in the investigated area. The water quality of the upper aquifer is fresh in the northern part of the study while lower aquifer contains saline water there.


Author(s):  
Fiaz Hussain ◽  
Ray-Shyan Wu

Hydraulic conductivity is the key and one of the most uncertain parameters in groundwater modeling. The grid based numerical simulation require spatial distribution of sampled hydraulic conductivity at un-sampled locations in the study area. This spatial interpolation has been routinely performed using variogram based models (two-point geostatistics methods). These traditional techniques fail to capture the complex geological structures, provides smoothing effects and ignore the higher order moments of subsurface heterogeneities. In this work, a multiple-point geostatistics (MPS) method is applied to interpolate hydraulic conductivity data which will be further used in WASH123D numerical groundwater simulation model for regional smart groundwater management. To do this, MPS need ‘training images (TIs) as a key input. TI is a conceptual model of subsurface geological heterogeneity which was developed by using concept of ages, topographic slope as an index criteria and knowledge of geologist. After considerations of full physics of study area, an example shows the advantages of using multiple-point geostatistics compared with the traditional two-point geostatistics methods (such as Kriging) for the interpolation of hydraulic conductivity data in a complex geological formation.


2017 ◽  
Vol 5 (4) ◽  
pp. 26-32 ◽  
Author(s):  
Azaria Robiana ◽  
M. Yashin Nahar ◽  
Hamidah Harahap

Glycerin residue is waste oleochemical industry that still contain glycerin. To produce quality and maximum quantity of glycerin, then research the effect of pH acidification using phosphoric acid. Glycerin analysis includes the analysis of pH, Fatty Acid and Ester (FAE), and analysis of the levels of glycerin. The maximum yield obtained at pH acidification 2 is grading 91,60% glycerin and Fatty Acid and Ester (FAE) 3,63 meq/100 g. Glycerin obtained is used as a plasticizer in the manufacture of bioplastics. Manufacture of bioplastics using the method of pouring a solution with varying concentrations of starch banana weevil (5% w/v and 7% w/v), variations of the addition of glycerin (1 ml, 3 ml, 5 ml and 7 ml), and a variety of gelatinization temperature (60°C, 70°C, and 80°C). Analysis of bioplastics include FTIR testing, tensile strength that is supported by SEM analysis. The results obtained in the analysis of FTIR does not form a new cluster on bioplastics starch banana weevil, but only a shift in the recharge area only, it is due to the addition of O-H groups originating from water molecules that enter the polysaccharide through a mechanism gelatinitation that generates interaction hydrogen bonding strengthened. The maximum tensile strength of bioplastics produced at a concentration of starch 7% w/v, 1 ml glycerine and gelatinization temperature of 80°C is 3,430 MPa. While the tensile strength bioplastic decreased with increasing glycerin which can be shown from the results of SEM where there is a crack, indentations and lumps of starch insoluble.


2020 ◽  
Vol 21 (2) ◽  
pp. 204-212
Author(s):  
Heru Sri Naryanto ◽  
Puspa Khaerani ◽  
Syakira Trisnafiah ◽  
Achmad Fakhrus Shomim ◽  
Wisyanto Wisyanto ◽  
...  

ABSTRACTGeostech Building, as an office and laboratory facility, requires a source of clean water from groundwater related to the limited supply of clean water from the PDAM. Due to the needs of freshwater from groundwater origin, data and information are needed regarding the potential groundwater in the area, including aquifer configuration, depth, and groundwater potential. The presence of groundwater is not distributed through every area, and it's related to the geological and geohydrological conditions. One of the geophysical methods that can describe subsurface is 2D geoelectric methods. This method can distinguish and analyze rock types, geological structures, groundwater aquifers, and other important information based on the characteristics of the electricity of rocks by looking at the value of the type of resistance. In this measurement, the Wenner Alpha configuration has been used, where the arrangement of A-B current electrodes and M-N potential electrodes have constant spacing. From the measurement results, it can be interpreted that there is a low resistivity layer containing porous groundwater as an aquifer. Based on regional geological data, it has been estimated that this layer is in the form of sandy tuff (0-1.5 ohm-m). The exploitation of groundwater with drilling is expected to reach the aquifer's upper layer at depth, starting from 11.5-13 meters. The groundwater aquifer thickness cannot be ascertained because of the penetration of the lower depth of 2D geoelectric measurements truncated by the constraint of a maximum stretch of cable. The upper layer of the aquifer contains a turned layer of fine tufa and medium tuff, which is impermeable, coarse tuff, and mixed soil with varying thickness at the upper layer.Keywords: 2D geoelectric, aquifer, potential groundwater, Geostech  ABSTRAKGedung Geostech sebagai sarana perkantoran dan laboratorium memerlukan sumber air bersih dari air tanah terkait dengan terbatasnya suplai air bersih dari PDAM. Kebutuhan air bersih berasal dari air tanah, maka diperlukan data dan informasi mengenai kondisi potensi air tanah di kawasan tersebut termasuk konfigurasi akuifer, kedalaman, dan potensi air tanahnya. Keberadaan air tanah tidaklah merata untuk setiap tempat dan sangat terkait dengan kondisi geologi dan geohidrologinya. Salah satu metode geofisika yang dapat memberikan gambaran kondisi bawah permukaan adalah dengan metode geolistrik 2D. Metode ini dapat membedakan dan menganalisis jenis batuan, struktur geologi, akuifer air tanah, dan informasi penting lainnya berdasarkan sifat kelistrikan batuan dengan melihat nilai tahanan jenisnya. Dalam pengukuran ini digunakan konfigurasi Wenner Alpha, dimana susunan elektroda arus A dan B dan elektroda potensial M dan N mempunyai spasi yang konstan. Dari hasil pengukuran dapat diinterpretasikan adanya lapisan dengan resistivitas rendah yang mengandung air tanah dan bersifat porous sebagai akuifer. Berdasarkan data geologi regional diperkirakan lapisan ini berupa tuf pasiran (0-1,5 ohm-m). Pengambilan air tanah dengan pemboran diperkirakan akan mengenai batas atas lapisan akuifer pada kedalaman 11,5-13 meter. Ketebalan akuifer air tanah tidak bisa dihitung karena penetrasi kedalaman pengukuran geolistrik 2D terbatasi oleh bentangan elektroda di permukaan. Lapisan di atas akuifer merupakan lapisan selang-seling tuf halus dan tuf sedang yang kedap air, tuf kasar, dan pada bagian paling atas merupakan tanah urugan dengan ketebalan bervariasi.Kata kunci: Geolistrik 2D, akuifer, potensi air tanah, Geostech  


Sign in / Sign up

Export Citation Format

Share Document