scholarly journals In Silico Analysis of Osa-miR164 Gene Family in Rice (Oryza Sativa)

Author(s):  
Vuong Quang Tien ◽  
Nguyen Huy Duong ◽  
Dao Trong Nhan ◽  
Phan Minh Vu ◽  
Do Thi Phuc

MicroRNA (miRNA) is a small non-coding RNA molecule containing about 22- 24 nucleotides, which functions in post-transcriptional regulation of gene expression. Previous reports have shown that miRNA plays an important role on the resistance ability of plants to adverse conditions. Rice (Oryza sativa) is a major food crop. Climate change makes the situation of salinity and drought in Vietnam worse, significantly affects rice cultivation area, leading to the decrease of the quantity and the quality of rice grains. In this research, we focused on miR164 family in rice. By using bioinformatics approach, we analyzed sequences of all osa-miR164 belonging to rice miR164 family, evaluated the expression profile of osa-miR164 under different stress conditions, predicted cis-regulatory elements on osa-miR164 gene promoters, and simultaneously predicted miR164-targeted genes and their expressions. The results showed the high conserve in mature osa-miR164 sequences but not in the precursor sequences, different expression pattern of osa-miR164 gene members under stress conditions and various cis-regulatory elements present in osa-miR164 gene promoters which may explain for diverse expression pattern of osa-miR164 genes. Some potential target genes of osa-miR164 were identified and their expressions under different stress conditions were analyzed.

Author(s):  
Harri Makkonen ◽  
Jorma J. Palvimo

AbstractAndrogen receptor (AR) acts as a hormone-controlled transcription factor that conveys the messages of both natural and synthetic androgens to the level of genes and gene programs. Defective AR signaling leads to a wide array of androgen insensitivity disorders, and deregulated AR function, in particular overexpression of AR, is involved in the growth and progression of prostate cancer. Classic models of AR action view AR-binding sites as upstream regulatory elements in gene promoters or their proximity. However, recent wider genomic screens indicate that AR target genes are commonly activated through very distal chromatin-binding sites. This highlights the importance of long-range chromatin regulation of transcription by the AR, shifting the focus from the linear gene models to three-dimensional models of AR target genes and gene programs. The capability of AR to regulate promoters from long distances in the chromatin is particularly important when evaluating the role of AR in the regulation of genes in malignant prostate cells that frequently show striking genomic aberrations, especially gene fusions. Therefore, in addition to the mechanisms of DNA loop formation between the enhancer bound ARs and the transcription apparatus at the target core promoter, the mechanisms insulating distally bound ARs from promiscuously making contacts and activating other than their normal target gene promoters are critical for proper physiological regulation and thus currently under intense investigation. This review discusses the current knowledge about the AR action in the context of gene aberrations and the three-dimensional chromatin landscape of prostate cancer cells.


Plants ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 2149
Author(s):  
Nkulu Kabange Rolly ◽  
Byung-Wook Yun

Nitrogen (N) is an essential macronutrient, which contributes substantially to the growth and development of plants. In the soil, nitrate (NO3) is the predominant form of N available to the plant and its acquisition by the plant involves several NO3 transporters; however, the mechanism underlying their involvement in the adaptive response under abiotic stress is poorly understood. Initially, we performed an in silico analysis to identify potential binding sites for the basic leucine zipper 62 transcription factor (AtbZIP62 TF) in the promoter of the target genes, and constructed their protein–protein interaction networks. Rather than AtbZIP62, results revealed the presence of cis-regulatory elements specific to two other bZIP TFs, AtbZIP18 and 69. A recent report showed that AtbZIP62 TF negatively regulated AtbZIP18 and AtbZIP69. Therefore, we investigated the transcriptional regulation of AtNPF6.2/NRT1.4 (low-affinity NO3 transporter), AtNPF6.3/NRT1.1 (dual-affinity NO3 transporter), AtNRT2.1 and AtNRT2.2 (high-affinity NO3 transporters), and AtGLU1 and AtGLU2 (both encoding glutamate synthase) in response to drought stress in Col-0. From the perspective of exploring the transcriptional interplay of the target genes with AtbZIP62 TF, we measured their expression by qPCR in the atbzip62 (lacking the AtbZIP62 gene) under the same conditions. Our recent study revealed that AtbZIP62 TF positively regulates the expression of AtPYD1 (Pyrimidine 1, a key gene of the de novo pyrimidine biosynthesis pathway know to share a common substrate with the N metabolic pathway). For this reason, we included the atpyd1-2 mutant in the study. Our findings revealed that the expression of AtNPF6.2/NRT1.4, AtNPF6.3/NRT1.1 and AtNRT2.2 was similarly regulated in atzbip62 and atpyd1-2 but differentially regulated between the mutant lines and Col-0. Meanwhile, the expression pattern of AtNRT2.1 in atbzip62 was similar to that observed in Col-0 but was suppressed in atpyd1-2. The breakthrough is that AtNRT2.2 had the highest expression level in Col-0, while being suppressed in atbzip62 and atpyd1-2. Furthermore, the transcript accumulation of AtGLU1 and AtGLU2 showed differential regulation patterns between Col-0 and atbzip62, and atpyd1-2. Therefore, results suggest that of all tested NO3 transporters, AtNRT2.2 is thought to play a preponderant role in contributing to NO3 transport events under the regulatory influence of AtbZIP62 TF in response to drought stress.


2016 ◽  
Vol 64 (3) ◽  
pp. 735-739 ◽  
Author(s):  
Chandrika S Gowda ◽  
Chunhua Song ◽  
Yali Ding ◽  
Malika Kapadia ◽  
Sinisa Dovat

Protein signaling and regulation of gene expression are the two major mechanisms that regulate cellular proliferation in leukemia. Discerning the function of these processes is essential for understanding the pathogenesis of leukemia and for developing the targeted therapies. Here, we provide an overview of one of the mechanisms that regulates gene transcription in leukemia. This mechanism involves the direct interaction between Casein Kinase II (CK2) and the Ikaros transcription factor. Ikaros (IKZF1) functions as a master regulator of hematopoiesis and a tumor suppressor in acute lymphoblastic leukemia (ALL). Impaired Ikaros function results in the development of high-risk leukemia. Ikaros binds to the upstream regulatory elements of its target genes and regulates their transcription via chromatin remodeling. In vivo, Ikaros is a target for CK2, a pro-oncogenic kinase. CK2 directly phosphorylates Ikaros at multiple amino acids. Functional experiments showed that CK2-mediated phosphorylation of Ikaros, regulates Ikaros’ DNA binding affinity, subcellular localization and protein stability. Recent studies revealed that phosphorylation of Ikaros by CK2 regulates Ikaros binding and repression of the terminal deoxytransferase (TdT) gene in normal thymocytes and in T-cell ALL. Available data suggest that the oncogenic activity of CK2 in leukemia involves functional inactivation of Ikaros and provide a rationale for CK2 inhibitors as a potential treatment for ALL.


2020 ◽  
Vol 21 (17) ◽  
pp. 6438
Author(s):  
Miriam Führer ◽  
Angelika Gaidora ◽  
Peter Venhuizen ◽  
Jedrzej Dobrogojski ◽  
Chloé Béziat ◽  
...  

Plants adjust their architecture to a constantly changing environment, requiring adaptation of differential growth. Despite their importance, molecular switches, which define growth transitions, are largely unknown. Apical hook development in dark grown Arabidopsis thaliana (A. thaliana) seedlings serves as a suitable model for differential growth transition in plants. Here, we show that the phytohormone auxin counteracts the light-induced growth transition during apical hook opening. We, subsequently, identified genes which are inversely regulated by light and auxin. We used in silico analysis of the regulatory elements in this set of genes and subsequently used natural variation in gene expression to uncover correlations between underlying transcription factors and the in silico predicted target genes. This approach uncovered that MADS box transcription factor AGAMOUS-LIKE 8 (AGL8)/FRUITFULL (FUL) modulates apical hook opening. Our data shows that transient FUL expression represses the expression of growth stimulating genes during early phases of apical hook development and therewith guards the transition to growth promotion for apical hook opening. Here, we propose a role for FUL in setting tissue identity, thereby regulating differential growth during apical hook development.


Author(s):  
Jiaqi Zhang ◽  
Hui Liu ◽  
Wenhao Zhang ◽  
Yinfang Li ◽  
Zhigang Fan ◽  
...  

Skin cutaneous melanoma (SKCM) is an aggressive form of skin cancer that results in high mortality rate worldwide. It is vital to discover effective prognostic biomarkers and therapeutic targets for the treatment of melanoma. Long non-coding RNA (lncRNA) has been verified to play an essential role in the regulation of gene expression in diseases and tumors. Therefore, it is significant to explore the function of lncRNAs in the development and progression of SKCM. In this paper, a set of differentially expressed lncRNAs (DElncRNAs) and mRNAs (DEmRNAs) were first screened out using 471 cutaneous melanoma samples and 813 normal skin samples. Gene Ontology and KEGG pathway enrichment analysis were performed to obtain the significant function annotations and pathways of DEmRNAs. We also ran survival analysis on both DElncRNAs and DEmRNAs to identify prognostic-related lncRNAs and mRNAs. Next, a set of hub genes derived from protein-protein interaction (PPI) network analysis and lncRNA target genes screened from starbase-ENCORI database were integrated to construct a lncRNA-mRNA regulatory module, which includes 6 lncRNAs 4 target mRNAs. We further checked the capacity of these lncRNA and mRNA in the diagnosis of melanoma, and found that single lncRNA can effectively distinguish tumor and normal tissue. Moreover, we ran CMap analysis to select a list of small molecule drugs for SKCM, such as EGFR inhibitor AG-490, growth factor receptor inhibitor GW-441756 and apoptosis stimulant betulinic-acid, which have shown therapeutic effect in the treatment of melanoma.


2020 ◽  
Author(s):  
Nadezda A. Fursova ◽  
Anne H. Turberfield ◽  
Neil P. Blackledge ◽  
Emma L. Findlater ◽  
Anna Lastuvkova ◽  
...  

AbstractHistone-modifying systems play fundamental roles in gene regulation and the development of multicellular organisms. Histone modifications that are enriched at gene regulatory elements have been heavily studied, but the function of modifications that are found more broadly throughout the genome remains poorly understood. This is exemplified by histone H2A mono-ubiquitylation (H2AK119ub1) which is enriched at Polycomb-repressed gene promoters, but also covers the genome at lower levels. Here, using inducible genetic perturbations and quantitative genomics, we discover that the BAP1 deubiquitylase plays an essential role in constraining H2AK119ub1 throughout the genome. Removal of BAP1 leads to pervasive accumulation of H2AK119ub1, which causes widespread reductions in gene expression. We show that elevated H2AK119ub1 represses gene expression by counteracting transcription initiation from gene regulatory elements, causing reductions in transcription-associated histone modifications. Furthermore, failure to constrain pervasive H2AK119ub1 compromises Polycomb complex occupancy at a subset of Polycomb target genes leading to their derepression, therefore explaining the original genetic characterisation of BAP1 as a Polycomb group gene. Together, these observations reveal that the transcriptional potential of the genome can be modulated by regulating the levels of a pervasive histone modification, without the need for elaborate gene-specific targeting mechanisms.


2019 ◽  
Vol 20 (23) ◽  
pp. 5864 ◽  
Author(s):  
Yuliang Wang ◽  
Abdiasis M. Hussein ◽  
Logeshwaran Somasundaram ◽  
Rithika Sankar ◽  
Damien Detraux ◽  
...  

microRNAs are ~22bp nucleotide non-coding RNAs that play important roles in the post-transcriptional regulation of gene expression. Many studies have established that microRNAs are important for cell fate choices, including the naïve to primed pluripotency state transitions, and their intermediate state, the developmentally suspended diapause state in early development. However, the full extent of microRNAs associated with these stage transitions in human and mouse remain under-explored. By meta-analysis of microRNA-seq, RNA-seq, and metabolomics datasets from human and mouse, we found a set of microRNAs, and importantly, their experimentally validated target genes that show consistent changes in naïve to primed transitions (microRNA up, target genes down, or vice versa). The targets of these microRNAs regulate developmental pathways (e.g., the Hedgehog-pathway), primary cilium, and remodeling of metabolic processes (oxidative phosphorylation, fatty acid metabolism, and amino acid transport) during the transition. Importantly, we identified 115 microRNAs that significantly change in the same direction in naïve to primed transitions in both human and mouse, many of which are novel candidate regulators of pluripotency. Furthermore, we identified 38 microRNAs and 274 target genes that may be involved in diapause, where embryonic development is temporarily suspended prior to implantation to uterus. The upregulated target genes suggest that microRNAs activate stress response in the diapause stage. In conclusion, we provide a comprehensive resource of microRNAs and their target genes involved in naïve to primed transition and in the paused intermediate, the embryonic diapause stage.


2019 ◽  
Vol 10 (1) ◽  
Author(s):  
A. Marieke Oudelaar ◽  
Caroline L. Harrold ◽  
Lars L. P. Hanssen ◽  
Jelena M. Telenius ◽  
Douglas R. Higgs ◽  
...  

AbstractSpecific communication between gene promoters and enhancers is critical for accurate regulation of gene expression. However, it remains unclear how specific interactions between multiple regulatory elements contained within a single chromatin domain are coordinated. Recent technological advances which can detect multi-way chromatin interactions at single alleles can provide insights into how multiple regulatory elements cooperate or compete for transcriptional activation. Here, we use such an approach to investigate how interactions of the α-globin enhancers are distributed between multiple promoters in a mouse model in which the α-globin domain is extended to include several additional genes. Our data show that gene promoters do not form mutually exclusive interactions with enhancers, but all interact simultaneously in a single complex. These findings suggest that promoters do not structurally compete for interactions with enhancers, but form a regulatory hub structure, which is consistent with recent models of transcriptional activation occurring in non-membrane bound nuclear compartments.


2021 ◽  
Vol 22 ◽  
Author(s):  
Sneha Lata Bhadouriya ◽  
Abhishek Suresh ◽  
Himanshu Gupta ◽  
Sandhya Mehrotra ◽  
Divya Gupta ◽  
...  

Background: Plant yield closely depends on its environment and is negatively affected by abiotic stress conditions like drought, salinity, heat, and cold. Analysis of the stress-inducible genes in Arabidopsis has previously shown that CCGAC and CATGTG play a crucial role in controlling the gene expression through the binding of DREB/CBF and NAC TFs under various stress conditions, mainly drought and salinity. Methods: The pattern of these motifs is conserved, which has been analyzed in this study to find the mechanism of gene expression through spacer specificity, inter motif distance preference, functional analysis, and statistical analysis for four different plants, namely Oryza sativa, Triticum aestivum, Arabidopsis thaliana, and Glycine max. Results: The spacer frequency analysis has shown a preference for particular spacer lengths among four genomes. The spacer specificity at all the spacer lengths which predicts dominance of particular base pairs over others, was analyzed to find the preference of the sequences in the flanking region. Functional analysis on stress-regulated genes for saline, osmotic, and heat stress clearly shows that these motif frequencies with inter motif distance (0-30) in the promoter region of Arabidopsis are highest in genes which are upregulated by saline and osmotic stress and downregulated by heat stress. Conclusion: Microarray data were analyzed to confirm the role of both motifs in stress response pathways. Transcription factors seem to prefer larger motif size with repeated CCGAC and CATGTG elements. The common preference for one spacer was further validated through Box and Whisker’s statistical analysis.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 2263-2263
Author(s):  
Nadia Felli ◽  
Elvira Pelosi ◽  
Rosanna Botta ◽  
Laura Fontana ◽  
Valentina Lulli ◽  
...  

Abstract MicroRNAs (miRs) are a class of a small (~ 22nt) RNAs, which play an important role in the negative regulation of gene expression by base-pairing to complementary sites on the target mRNAs. While it is established that miRs are involved in a variety of basic processes, e.g., cell proliferation and apoptosis, neural development, fat metabolism and stress response, little is known on their expression and function in hematopoiesis. In order to investigate miR expression in erythropoietic (E), megakaryocytic (Mk), granulopoietic (G) and monocytopoietic (Mo) lineages, we have assayed their level at discrete sequential stages of the E, Mk, G or Mo series in unilineage differentiation/maturation cultures of cord blood (CB) CD34+ cells. The analysis was performed using a microarray chip containing as probes gene-specific 40mer oligonucleotides, generated from 161 human and 84 mouse precursors miRs (Liu GC et al., PNAS, 2004). Northern blot analysis confirmed the microarray data. The results indicate that the majority of the analyzed miRs is not expressed in CB hematopoietic cells. However, 49 miRs are expressed at significant levels in CD34+ cells: in most cases the expression level declines during hematopoietic differentiation according to diverse patterns, i.e., the decline may be more or less pronounced, more or less rapid and differ in the diverse hematopoietic lineages. As expression pattern examples, we observed that: (a) miR 223 is strongly downmodulated in the E lineage, whereas its level is not affected or increased in the other series; (b) miR 221 and 222 level sharply declines in the E lineage, while the drop is less pronounced in the Mk, G and Mo series; conversely, (c) miR 17, 20, 106 are downmodulated prevalentely in the G/Mo series, as compared to the E/Mk lineages. Interestingly, cluster analysis indicates that miR expression in hematopoietic cells is sharply different from that observed in CB T lymphocytes. The lineage- and stage-specific pattern of miR expression is of functional relevance. As an example, transfection of miR 222 oligonucleotide into CD34+ cells grown in multilineage clonogenic culture causes a pronounced shift from E to GM colony formation, indicating modulation of the lineage commitment of hematopoietic progenitors. The target genes of miRs expressed in hematopoietic cells are often of pivotal functional significance, e.g., miR 222 targets the kit receptor (N. Felli et al., this Meeting). A single miR may target diverse mRNAs, e.g., miR 222 targets kit, Ets1 and Fli1. Conversely, a single mRNA may be targeted by different miRs, e.g.,, kit is targeted by miR 146, 221 and 222. Noterworthily, the miR expression pattern in primitive hematopoietic cells and their progeny is fully distinct from that observed in primitive mesenchymal and neural cells (i.e., “neurospheres”) and their progeny: this suggests that miR downmodulation during differentiation of primitive cells contributes to tissue-specific gene expression by unblocking translational repression of the target mRNAs.


Sign in / Sign up

Export Citation Format

Share Document