scholarly journals Antibiotic resistance features in Klebsiella pneumoniae and Escherichia coli strains isolated from hospital and community acquired urinary tract infections

2021 ◽  
Vol 26 (1) ◽  
pp. 2244-2248
Author(s):  
AL SHAIKHLI NAWFAL HAITHAM ◽  
VIOLETA CORINA CRISTEA ◽  
IRINA GHEORGHE ◽  
SAJJAD MOHSIN IRRAYIF ◽  
HAMZAH BASIL MOHAMMED ◽  
...  

A total number of 35 strains (n=23 of K. pneumoniae and n=12 of E.coli) were isolated in May 2017 from patients with UTI, hospitalized in the National Institute for Cardiovascular Diseases Prof. C.C. Iliescu and from community infections (CA) diagnosed in Central Reference Synevo-Medicover Laboratory from Bucharest. The hospital strains were identified by BD Phoenix and the CA ones by mass spectrometry using MALDI Biotyper. The antibiotic susceptibility was determined by agar disk diffusion (CLSI, 2017) and automated methods (BD Phoenix and Vitek II system). For molecular characterization, all strains were analyzed be using PCR amplification. The investigated strains revealed the presence of tetracycline resistance gene, i.e. tet(A) (67% in E. coli and 45% of K. pneumoniae strains), tet(D) (8% of E. coli and 5% of K. pneumoniae strains), carbapenemase genes (blaOXA-48 in 40% of the K. pneumoniae strains); blaTEM (25% of E. coli strains and 10% of K. pneumoniae strains).

2020 ◽  
Vol 7 ◽  
Author(s):  
John I. Alawneh ◽  
Ben Vezina ◽  
Hena R. Ramay ◽  
Hulayyil Al-Harbi ◽  
Ameh S. James ◽  
...  

Escherichia coli is frequently associated with mastitis in cattle. “Pathogenic” and “commensal” isolates appear to be genetically similar. With a few exceptions, no notable genotypic differences have been found between commensal and mastitis-associated E. coli. In this study, 24 E. coli strains were isolated from dairy cows with clinical mastitis in three geographic regions of Australia (North Queensland, South Queensland, and Victoria), sequenced, then genomically surveyed. There was no observed relationship between sequence type (ST) and region (p = 0.51). The most common Multi Locus Sequence Type was ST10 (38%), then ST4429 (13%). Pangenomic analysis revealed a soft-core genome of 3,463 genes, including genes associated with antibiotic resistance, chemotaxis, motility, adhesion, biofilm formation, and pili. A total of 36 different plasmids were identified and generally found to have local distributions (p = 0.02). Only 2 plasmids contained antibiotic resistance genes, a p1303_5-like plasmid encoding multidrug-resistance (trimethoprim, quaternary ammonium, beta-lactam, streptomycin, sulfonamide, and kanamycin) from two North Queensland isolates on the same farm, while three Victorian isolates from the same farm contained a pCFSAN004177P_01-like plasmid encoding tetracycline-resistance. This pattern is consistent with a local spread of antibiotic resistance through plasmids of bovine mastitis cases. Notably, co-occurrence of plasmids containing virulence factors/antibiotic resistance with putative mobilization was rare, though the multidrug resistant p1303_5-like plasmid was predicted to be conjugative and is of some concern. This survey has provided greater understanding of antibiotic resistance within E. coli-associated bovine mastitis which will allow greater prediction and improved decision making in disease management.


Antibiotics ◽  
2019 ◽  
Vol 8 (4) ◽  
pp. 170 ◽  
Author(s):  
Ashok Chockalingam ◽  
Sharron Stewart ◽  
Lin Xu ◽  
Adarsh Gandhi ◽  
Murali K. Matta ◽  
...  

Urinary tract infections (UTI) are common worldwide and are becoming increasingly difficult to treat because of the development of antibiotic resistance. Immunocompetent murine models of human UTI have been used to study pathogenesis and treatment but not for investigating resistance development after treatment with antibiotics. In this study, intravesical inoculation of uropathogenic Escherichia coli CFT073 in immunocompetent Balb/c mice was used as a model of human UTI. The value of the model in investigating antibiotic exposure on in vivo emergence of antibiotic resistance was examined. Experimentally infected mice were treated with 20 or 200 mg/kg ampicillin, 5 or 50 mg/kg ciprofloxacin, or 100 or 1000 mg/kg of fosfomycin. Ampicillin and ciprofloxacin were given twice daily at 8 h intervals, and fosfomycin was given once daily. Antibiotic treatment began 24 h after bacterial inoculation and ended after 72 h following the initial treatment. Although minimum inhibitory concentrations (MIC) for the experimental strain of E. coli were exceeded at peak concentrations in tissues and consistently in urine, low levels of bacteria persisted in tissues in all experiments. E. coli from bladder tissue, kidney, and urine grew on plates containing 1× MIC of antibiotic, but none grew at 3× MIC. This model is not suitable for studying emergent resistance but might serve to examine bacterial persistence.


2015 ◽  
Vol 81 (16) ◽  
pp. 5560-5566 ◽  
Author(s):  
Seung Won Shin ◽  
Min Kyoung Shin ◽  
Myunghwan Jung ◽  
Kuastros Mekonnen Belaynehe ◽  
Han Sang Yoo

ABSTRACTThe aim of this study was to investigate the prevalence and transferability of resistance in tetracycline-resistantEscherichia coliisolates recovered from beef cattle in South Korea. A total of 155E. coliisolates were collected from feces in South Korea, and 146 were confirmed to be resistant to tetracycline. The tetracycline resistance genetet(A) (46.5%) was the most prevalent, followed bytet(B) (45.1%) andtet(C) (5.8%). Strains carryingtet(A) plustet(B) andtet(B) plustet(C) were detected in two isolates each. In terms of phylogenetic grouping, 101 (65.2%) isolates were classified as phylogenetic group B1, followed in decreasing order by D (17.4%), A (14.2%), and B2 (3.2%). Ninety-one (62.3%) isolates were determined to be multidrug resistant by the disk diffusion method. MIC testing using the principal tetracyclines, namely, tetracycline, chlortetracycline, oxytetracycline, doxycycline, and minocycline, revealed that isolates carryingtet(B) had higher MIC values than isolates carryingtet(A). Conjugation assays showed that 121 (82.9%) isolates could transfer a tetracycline resistance gene to a recipient via the IncFIB replicon (65.1%). This study suggests that the high prevalence of tetracycline-resistantE. coliisolates in beef cattle is due to the transferability of tetracycline resistance genes betweenE. colipopulations which have survived the selective pressure caused by the use of antimicrobial agents.


2019 ◽  
Vol 11 (01) ◽  
pp. 017-022 ◽  
Author(s):  
Rashmi M. Karigoudar ◽  
Mahesh H. Karigoudar ◽  
Sanjay M. Wavare ◽  
Smita S. Mangalgi

Abstract BACKGROUND: Escherichia coli accounts for 70%–95% of urinary tract infections (UTIs). UTI is a serious health problem with respect to antibiotic resistance and biofilms formation being the prime cause for the antibiotic resistance. Biofilm can restrict the diffusion of substances and binding of antimicrobials. In this context, the present study is aimed to perform in vitro detection of biofilm formation among E. coli strains isolated from urine and to correlate their susceptibility pattern with biofilm formation. MATERIALS AND METHODS: A total of 100 E. coli strains isolated from patients suffering from UTI were included in the study. The identification of E. coli was performed by colony morphology, Gram staining, and standard biochemical tests. The detection of biofilm was carried out by Congo Red Agar (CRA) method, tube method (TM), and tissue culture plate (TCP) method. Antimicrobial sensitivity testing was performed by Kirby–Bauer disc diffusion method on Muller–Hinton agar plate. RESULTS: Of the 100 E. coli strains, 49 (49%) and 51 (51%) were from catheterized and noncatheterized patients, respectively. Biofilm production was positive by CRA, TM, and TCP method were 49 (49%), 55 (55%), and 69 (69%), respectively. Biofilm producers showed maximum resistance to co-trimoxazole (73.9%), gentamicin (94.2%), and imipenem (11.6%) when compared to nonbiofilm producers. Significant association was seen between resistance to antibiotic and biofilm formation with a P = 0.01 (<0.05). CONCLUSION: A greater understanding of biofilm detection in E. coli will help in the development of newer and more effective treatment. The detection of biofilm formation and antibiotic susceptibility pattern helps in choosing the correct antibiotic therapy.


Author(s):  
Mahdis Ghavidel ◽  
Tahere Gholamhosseini-Moghadam ◽  
Kimiya Nourian ◽  
Kiarash Ghazvini

Background and Objectives: Escherichia coli is known to be the pathogen commonly isolated from those infected with uri- nary tract infections (UTIs). The aim of this study was to investigate the presence of E. coli virulence genes and antibiotics’ resistance pattern among clinical isolates in the Northeast of Iran. Relationships between virulence genes and antimicrobial resistances were studied as well. Materials and Methods: Three hundred isolates of E. coli were isolated from patients with UTIs that referred to Ghaem and Imam Reza hospitals (Mashhad, Iran) during August 2016 to February 2017. A multiplex PCR was employed to amplify the genes encoding pyelonephritis associated pili (pap), S-family adhesions (sfa), type1fimbriae (fimH) and aerobactin (aer). Disk diffusion test was performed to test the susceptibility of isolates to β-lactams, aminoglycosides, cephalosporins, quino- lone, fluoroquinolones, carbapenems and trimethoprim-sulfamethoxazole. Results: The PCR results identified the fimH in 78.4%, aer in 70.5%, sfa in 13.6% and the pap in 8.2% of isolates. The rates of antibiotic resistance of the isolates were as follows: 64.7% resistant to cephalosporins, 34% to trimethoprim-sul- famethoxazole, 31% to fluoroquinolones, 15.3% to aminoglycosides, 13.3% to β-lactams, 7.8% to quinolones and 4.4% to carbapenems. Significant relationships existed between pap and aer, pap and sfa, aer and fluoroquinolones also pap and cephalosporins. Conclusion: fimH and aer were found in > 50% of isolates suggesting the importance of both genes in UPEC. The majority of isolates had fimH as adhesion factor for colonization. Determining antibiotic resistance patterns in specific geographical areas is necessary for appropriate treatment of urinary tract infection. The high rate of resistance to cephalosporins is most likely due to incorrect drug administration


Antibiotics ◽  
2020 ◽  
Vol 9 (4) ◽  
pp. 161 ◽  
Author(s):  
Saskia-Camille Flament-Simon ◽  
Marie-Hélène Nicolas-Chanoine ◽  
Vanesa García ◽  
Marion Duprilot ◽  
Noémie Mayer ◽  
...  

Escherichia coli is the main pathogen responsible for extraintestinal infections. A total of 196 clinical E. coli consecutively isolated during 2016 in Spain (100 from Lucus Augusti hospital in Lugo) and France (96 from Beaujon hospital in Clichy) were characterized. Phylogroups, clonotypes, sequence types (STs), O:H serotypes, virulence factor (VF)-encoding genes and antibiotic resistance were determined. Approximately 10% of the infections were caused by ST131 isolates in both hospitals and approximately 60% of these infections were caused by isolates belonging to only 10 STs (ST10, ST12, ST58, ST69, ST73, ST88, ST95, ST127, ST131, ST141). ST88 isolates were frequent, especially in Spain, while ST141 isolates significantly predominated in France. The 23 ST131 isolates displayed four clonotypes: CH40-30, CH40-41, CH40-22 and CH40-298. Only 13 (6.6%) isolates were carriers of extended-spectrum beta-lactamase (ESBL) enzymes. However, 37.2% of the isolates were multidrug-resistant (MDR). Approximately 40% of the MDR isolates belonged to only four of the dominant clones (B2-CH40-30-ST131, B2-CH40-41-ST131, C-CH4-39-ST88 and D-CH35-27-ST69). Among the remaining MDR isolates, two isolates belonged to B2-CH14-64-ST1193, i.e., the new global emergent MDR clone. Moreover, a hybrid extraintestinal pathogenic E.coli (ExPEC)/enteroaggregative isolate belonging to the A-CH11-54-ST10 clone was identified.


2017 ◽  
Vol 2017 ◽  
pp. 1-10 ◽  
Author(s):  
Amirhossein Yousefi ◽  
Saam Torkan

Resistant uropathogenic Escherichia coli is the most common cause of urinary tract infections in dogs. The present research was done to study the prevalence rate and antimicrobial resistance properties of UPEC strains isolated from healthy dogs and those which suffered from UTIs. Four-hundred and fifty urine samples were collected and cultured. E. coli-positive strains were subjected to disk diffusion and PCR methods. Two-hundred out of 450 urine samples (44.4%) were positive for E. coli. Prevalence of E. coli in healthy and infected dogs was 28% and 65%, respectively. Female had the higher prevalence of E. coli (P=0.039). Marked seasonality was also observed (P=0.024). UPEC strains had the highest levels of resistance against gentamicin (95%), ampicillin (85%), amikacin (70%), amoxicillin (65%), and sulfamethoxazole-trimethoprim (65%). We found that 21.50% of UPEC strains had simultaneously resistance against more than 10 antibiotics. Aac(3)-IV (77%), CITM (52.5%), tetA (46.5%), and sul1 (40%) were the most commonly detected antibiotic resistance genes. Findings showed considerable levels of antimicrobial resistance among UPEC strains of Iranian dogs. Rapid identification of infected dogs and their treatment based on the results of disk diffusion can control the risk of UPEC strains.


2017 ◽  
Vol 66 (1) ◽  
pp. 25-30 ◽  
Author(s):  
Sarah M. Abdelhamid ◽  
Rania R. Abozahra

Escherichia coli is one of the most frequent causes of urinary tract infections. Efflux system overexpression is reported to contribute to E. coli resistance to several antibiotics. Our aim in this study was to investigate the relation between antibiotic resistance and the expression of the efflux pump genes acrA and mdfA in E. coli by real-time reverse transcription-PCR. We tested the in vitro susceptibilities to 12 antibiotics in 28 clinical isolates of E. coli obtained from urine samples. We also determined the minimum inhibitory concentrations of levofloxacin to these samples. We then revealed significant correlations between the overexpression of both mdfA and acrA and MICs of levofloxacin. In conclusion, we demonstrated that the increased expression of efflux pump genes such as mdfA and acrA can lead to levofloxacin resistance in E. coli. These findings contribute to further understanding of the molecular mechanisms of efflux pump systems and how they contribute to antibiotic resistance.


Doctor Ru ◽  
2021 ◽  
Vol 20 (10) ◽  
pp. 48-53
Author(s):  
N.A. Belykh ◽  
◽  
S.V. Tereschenko ◽  
N.A. Anikeeva ◽  
S.S. Kantutis ◽  
...  

Study Objective: To study a spectrum of uropathogens and their sensitivity to antimicrobials in urinary tract infections (UTIs) in children in Ryazan and Ryazan Region. Study Design: retrospective study. Materials and Methods. We conducted a retrospective local laboratory monitoring of urinary microflora and analysed its sensitivity to antimicrobials in 111 patients aged 2 months to 17 years old who were undergoing traditional UI therapy in 2020. The study group comprised 75 (67.6%) girls and 36 (32.4%) boys. Pathogen isolation and type identification were performed using urine specimens collected in sterile disposable plastic containers prior to antimicrobial therapy. Material was delivered for analysis within 2 hours from collection. For testing of pathogen sensitivity to antimicrobials, we used the phenotyping diffusion test and an analytical test for carbapenems inactivation. Study Results. Prevailing causative agents of UIs were Escherichia coli (50.4%) and Klebsiella pneumoniae (14.4%). Resistance determinants were found in 9.0% and 2.7% of Е. соli and K. pneumoniae urological strains, respectively. The main mechanism of resistivity was production of wide spectrum plasmid β-lactamases. The highest activity in E. coli was demonstrated by generation III–IV cephalosporins, aminoglycosides, fosfomicin (100%), nitrofurantoin (91.3%), and aminopenicillins (76.1–86.9%). For K. pneumoniae, generation III–IV cephalosporins and aminoglycosides were most potent (100%). All resistant pathogens were sensitive to cefoperazone sulbactam, meropenem, imipenem, aminoglycosides (100%); tigecycline, nitrofurantoin, and fosfomicin were most potent against E. coli. Conclusion. Children with UIs in Ryazan Region had mostly gram-negative bacteria in their urine (85.6%), Enterobacteralеs (81.1%) being a prevailing type. Antimicrobials resistance determinants were quite rare (17.8%) in these urine isolates; all of them were class A ЕSBL producers. These characteristic features of antibiotic resistance of uropathogenic enterobacteria strains allow using β-lactam antibiotics in empiric initial treatment and emphasising the need in patient-specific selection of antimicrobials. Keywords: antibacterial therapy, antibiotic resistance, children, urinary tract infections, Escherichia coli, Klebsiella pneumoniae.


2021 ◽  
Vol 14 (2) ◽  
Author(s):  
Mostafa Boroumand Boroumand ◽  
Mohsen Naghmachi ◽  
Mohammad Amin Ghatee

Background: Many bacteria can cause urinary tract infections (UTIs), among which Escherichia coli is the most common causative agent. E. coli strains are divided into eight phylogenetic groups based on the new Quadroplex-PCR method, which are different in terms of patterns of resistance to antibiotics, virulence, and environmental characteristics. Objectives: This study aimed to determine the phylogenetic groups and the prevalence of drug resistance genes in E. coli strains causing UTIs. Methods: In this descriptive cross-sectional study, 129 E. coli isolates obtained from the culture of patients with UTIs were evaluated for phylogenetic groups using the new method of Clermont et al. The identification of phylogenetic groups and antibiotic resistance genes was performed using the multiplex polymerase chain reaction (PCR) method. Results: In this study, concerning the distribution of phylogenetic groups among E. coli isolates, the phylogenetic group B2 (36.4%) was the most common phylogenetic group, followed by phylogroups C (13.2%), clade I (10.1%), D (9.3%), and A (3.1%) while groups B1 and F were not observed in any of the isolates, and 20.2% had an unknown state. Also, out of 129 E. coli isolates, the total frequency of tetA, tetB, sul1, sul2, CITM, DfrA, and qnr resistance genes was 59.7%, 66.7, 69, 62, 30.2, 23.3, and 20.2%, respectively. In this study, there was a significant relationship between antibiotics (P = 0.026), cefotaxime (P = 0.003), and nalidixic acid (P = 0.044) and E. coli phylogenetic groups. No significant relationship was observed between E. coli phylogenetic groups and antibiotic resistance genes. Conclusions: The results of this study showed that strains belonging to group B2 had the highest prevalence among other phylogroups, and also, the frequency of antibiotic resistance genes and drug-resistant isolates had a higher prevalence in this phylogroup. These results show that phylogroup B2 has a more effective role in causing urinary tract infections compared to other phylogroups, and this phylogroup can be considered a genetic reservoir of antibiotic resistance.


Sign in / Sign up

Export Citation Format

Share Document