Spatial variations of sills and implications for magma dispersal across the Karoo basin

2020 ◽  
Vol 123 (4) ◽  
pp. 511-530
Author(s):  
A. Coetzee ◽  
A.F.M. Kisters

Abstract Dolerite sill complexes of the Karoo Large Igneous Province (ca. 183 Ma) show systematic variations in emplacement style and size throughout the Karoo basin. These variations are explained in terms of three main, interrelated factors, namely the overburden thickness or emplacement depth, variations in host rock rigidities as a result of sedimentary facies changes in the Karoo basin, and proximity to magma feeders. In the northern parts of the thinner (<500 m) and more coarse-clastic Karoo stratigraphy, sills intrude preferentially below more rigid sandstone horizons that acted as stress barriers causing the arrest of magma ascent and lateral spreading below sandstone beds. The low overburden promotes roof uplift above sills and associated brittle faulting can initiate the formation of inclined sheets that limits the lateral propagation path of inner sills. Roof uplift is further promoted by the proximity to magma feeders in the basement and resulting variations in magma pressure that control the spreading rate and inflation of sills. Localised dyke networks spaced at regular intervals and rooted in underlying sills reflect the stretching of roof rocks above inflating sills. The combination of these effects results in relatively small (<10 km) diameters of sills in the northern parts of the basin. Sills emplaced at intermediate depths (ca. 700 m) in the central Karoo basin are marked by larger diameters (>30 km) and thicknesses of up to 100 m. This reflects the higher overburden pressures and the delay of roof failure and subsequent formation of inclined sheets. Dyke networks in the roof of these sills become more irregular and non-systematic at these greater depths. At even greater depths of up to 2 km in the southern parts of the Karoo basin, mega-sills reach diameters of 50 to 80 km, but thicknesses of only up to 35 m. Thick shale-rich sequences in the southern Karoo basin facilitate sill emplacement through internal host-rock deformation and ductile flow. The thicker overburden and different host rock rigidity delay or suppress roof failure and formation of inclined sheet, thus allowing for the lateral propagation of sills. The deeper-seated sills are typically not associated with local dyke networks.

Author(s):  
William McCarthy ◽  
R. John Reavy ◽  
Carl T. Stevenson ◽  
Michael S. Petronis

ABSTRACTThe Galway Granite Complex is unique among the British and Irish Caledonian granitoid terranes, as it records punctuated phases of magmatism from ∼425–380 Ma throughout the latest phase of the Caledonian Orogeny. Remapping of the Omey Pluton, the oldest member of this suite, has constrained the spatial distribution and contact relationships of the pluton's three main facies relative to the nature of the host rock structure. The external contacts of the pluton are mostly concordant to the limbs and hinge of the Connemara Antiform. New AMS data show that a subtle concentric outward dipping foliation is present, and this is interpreted to reflect pluton inflation during continued magma ingress. Combined field, petrographic and AMS data show that two sets of shear zones (NNW–SSE and ENE–WSW) cross-cut the concentric foliation, and that these structures were active during the construction of the pluton. We show that regional sinistral transpression at ∼420 Ma would have caused dilation along the intersection of these two fault sets, and suggest that this facilitated centralised magma ascent. Lateral emplacement was controlled by the symmetry of the Connemara Antiform to ultimately produce a discordant phacolith. We propose that regional sinistral transpression at ∼420 Ma influenced the siting of smaller intrusions over NNW–SSE faults, and that the later onset of regional transtension caused larger volumes of magma to intrude along the E–W Skird Rocks Fault at ∼400 Ma.


2015 ◽  
Vol 282 (1811) ◽  
pp. 20150834 ◽  
Author(s):  
Michael O. Day ◽  
Jahandar Ramezani ◽  
Samuel A. Bowring ◽  
Peter M. Sadler ◽  
Douglas H. Erwin ◽  
...  

A mid-Permian (Guadalupian epoch) extinction event at approximately 260 Ma has been mooted for two decades. This is based primarily on invertebrate biostratigraphy of Guadalupian–Lopingian marine carbonate platforms in southern China, which are temporally constrained by correlation to the associated Emeishan Large Igneous Province (LIP). Despite attempts to identify a similar biodiversity crisis in the terrestrial realm, the low resolution of mid-Permian tetrapod biostratigraphy and a lack of robust geochronological constraints have until now hampered both the correlation and quantification of terrestrial extinctions. Here we present an extensive compilation of tetrapod-stratigraphic data analysed by the constrained optimization (CONOP) algorithm that reveals a significant extinction event among tetrapods within the lower Beaufort Group of the Karoo Basin, South Africa, in the latest Capitanian. Our fossil dataset reveals a 74–80% loss of generic richness between the upper Tapinocephalus Assemblage Zone (AZ) and the mid- Pristerognathus AZ that is temporally constrained by a U–Pb zircon date (CA-TIMS method) of 260.259 ± 0.081 Ma from a tuff near the top of the Tapinocephalus AZ. This strengthens the biochronology of the Permian Beaufort Group and supports the existence of a mid-Permian mass extinction event on land near the end of the Guadalupian. Our results permit a temporal association between the extinction of dinocephalian therapsids and the LIP volcanism at Emeishan, as well as the marine end-Guadalupian extinctions.


2000 ◽  
Vol 423 ◽  
pp. 71-125 ◽  
Author(s):  
VLADIMIR M. GRYANIK ◽  
TATIANA N. DORONINA ◽  
DIRK J. OLBERS ◽  
TORSTEN H. WARNCKE

The problem of lateral heat/buoyancy transport in localized turbulent convection dominated by rotation in continuously stratified fluids of finite depth is considered. We investigate the specific mechanism of the vortex-dominated lateral spreading of anomalous buoyancy created in localized convective regions owing to outward propagation of intense heton-like vortices (pairs of vortices of equal potential vorticity (PV) strength with opposite signs located at different depths), each carrying a portion of buoyancy anomaly. Assuming that the quasi-geostrophic form of the PV evolution equation can be used to analyse the spreading phenomenon at fast rotation, we develop an analytical theory for the dynamics of a population of three-dimensional hetons. We analyse in detail the structure and dynamics of a single three-dimensional heton, and the mutual interaction between two hetons and show that the vortices can be in confinement, splitting or reconnection regimes of motion depending on the initial distance between them and the ratio of the mixing-layer depth to the depth of fluid (local to bulk Rossby radii). Numerical experiments are made for ring-like populations of randomly distributed three-dimensional hetons. We found two basic types of evolution of the populations which are homogenizing confinement (all vortices are predominantly inside the localized region having highly correlated wavelike dynamics) and vortex-dominated spreading (vortices propagate out of the region of generation as individual hetons or heton clusters). For the vortex-dominated spreading, the mean radius of heton populations and its variance grow linearly with time. The law of spreading is quantified in terms of both internal (specific for vortex dynamics) and external (specific for convection) parameters. The spreading rate is proportional to the mean speed of propagation of individual hetons or heton clusters and therefore depends essentially on the strength of hetons and the ratio of local to bulk Rossby radii. A theoretical explanation for the spreading law is given in terms of the asymptotic dynamics of a single heton and within the frames of the kinetic equation derived for the distribution function of hetons in collisionless approximation. This spreading law gives an upper ‘advective’ bound for the superdiffusion of heat/buoyancy. A linear law of spreading implies that diffusion parameterizations of lateral buoyancy flux in non-eddy-resolving models are questionable, at least when the spreading is dominated by heton dynamics. We suggest a scaling for the ‘advective’ parameterization of the buoyancy flux, and quantify the exchange coefficient in terms of the mean propagation speed of hetons. Finally, we discuss the perspectives of the heton theories in other problems of geophysical fluid dynamics.


2017 ◽  
Vol 120 (2) ◽  
pp. 293-302 ◽  
Author(s):  
E.M. Bordy ◽  
S. Spelman ◽  
D.I. Cole ◽  
P. Mthembi

Abstract The Lower Permian Pietermaritzburg Formation is a mudrock-dominated, upward-coarsening stratigraphic unit in the lower Ecca Group (Karoo Supergroup) in the northeastern part of the main Karoo Basin of South Africa. The formation extends over most of the KwaZulu-Natal Province, and due to its lithology and the local climate, it is usually poorly exposed; hence the description is mainly based on borehole records. From a measured thickness of about 430 m south of the type area around Pietermaritzburg, the formation thins progressively northwards and pinches out against the Dwyka Group and pre-Karoo basement north of latitude 26° 30' S. This Lower Permian formation is considered a stratigraphic equivalent of the Prince Albert Formation in the southern part of the main Karoo Basin. The Pietermaritzburg Formation only preserves scattered, fragmentary plant fossil and invertebrate trace fossils, which are diagnostic of marine conditions (e.g. Helminthopsis). Based on its sedimentary facies characteristics and ichnofossil assemblages, the unit was probably deposited under low energy conditions on a northerly shallowing marine shelf that initially experienced deepening (during a major Artinskian transgression) and then shallowing in the early Kungurian.


2021 ◽  
Author(s):  
Vincent Twomey ◽  
William McCarthy ◽  
Craig Magee

<p>Laccoliths play a significant role in the transport and storage of magma in sub-volcanic systems. The construction and geometry of laccoliths can influence host rock and surface deformation patterns that may precede and provide warning of active magmatism and impending eruptions. Yet how laccolith construction and internal magma dynamics controls the location and form of magma ascent conduits (e.g., dykes and inclined sheets), which facilitate magma evacuation and may feed volcanic eruptions, remains poorly documented in natural examples.</p><p>The excellently exposed silicic, sub-volcanic Miocene Reyðarártindur Laccolith in SE Iceland offers an opportunity to investigate how magma ascent within inclined sheets, which emanated from the laccolith, related to intrusion construction and deformation in the surrounding host rock. We combine detailed structural mapping with anisotropy of magnetic susceptibility (AMS) analyses, which allow us to map magnetic rock fabrics that reflect magma flow patterns, to show that the laccolith comprises of several distinct magma lobes that intruded laterally towards the south-west. Each lobe intruded, inflated, and coalesced along a NE-SW primary axis facilitated by doming (i.e., forced folding) of the host rock. We also shown that pre-existing NNE-striking, left-stepping, en-echelon fault/fractures, as well as those generated during intrusion-induced host rock uplift, host moderately to steeply inclined rhyolitic/granophyric sheets that emanate from the lateral terminations of some flow lobes.</p><p>Based on the observed geometrical relationships between AMS fabrics and the sheet margins where magnetic foliations subparallel sheet contacts, or characterize an imbrication fabric, we suggest that magma evacuated moderately to steeply upward via these fault/fracture-controlled sheets. As these inclined sheets dip towards the laccolith, any eruptions they may have fed would have been laterally offset from the laccolith and any overlying surface deformation driven by forced folding. Our study shows that magma evacuation and ascent from laccoliths can be facilitated by inclined sheets that form at the lateral terminations of magma lobes that are spatially controlled by laccolith construction (e.g., flow direction and doming of the host rock) and the presence of pre-existing structures.</p>


2020 ◽  
Author(s):  
Hans Jørgen Kjøll ◽  
Olivier Galland ◽  
Loic Labrousse ◽  
Torgeir B. Andersen

<p>Dykes are the main magma transport pathways through the Earth’s crust and, in volcanic rifts, they are considered the main mechanism to accommodate tectonic extension. Most models consider dykes as hydro-fractures propagating as brittle tensile, mode I cracks opening perpendicular to the least principal stress. This implies that dykes emplaced in rifts are expected to be sub-vertical and accommodate crustal extension. Here we present detailed field observations of a well-exposed dyke swarm that formed near the brittle-ductile transition at a magma-rich rifted margin during opening of the Iapetus Ocean. It was related to a ca 600 million year-old large igneous province. Our observations show that dykes were not systematically emplaced by purely brittle deformation and that dyke orientation may differ from the typical mode 1 pattern. Distinct dyke morphologies related to different emplacement mechanisms have been recognized including: 1) Brittle dykes that exhibit straight contacts with the host rock, sharp tips, and en-echelon segments with bridges exhibiting angular fragments; 2) Brittle-ductile dykes with undulating contacts, rounded tips, folding of the host rock and contemporaneous brittle and ductile features; 3) Ductile “dykes” with rounded shapes and mingling between partially molten host rock and the intruding mafic magma. The brittle dykes exhibit two distinct orientations separated by ~30° that are mutually cross-cutting, demonstrating that the dyke swam did not consist of only vertical sheets oriented perpendicular to regional extension, as expected in rifts. By using the host-rock layers as markers, a kinematic restoration to quantify the average strain accommodating the emplacement of the dyke complex was performed. This strain estimate shows that the dyke swarm accommodated >100% horizontal extension, but also 27% vertical thickening. This suggests that the magma influx rate was higher than the tectonic stretching rate, which imply that magma was emplaced forcefully, as supported by field observations of the host-rock deformation. Finally, observations of typical “brittle” dykes that were subsequently deformed by ductile mechanisms as well as dykes that were emplaced by purely ductile mechanisms suggest that the fast emplacement of the dyke swarm triggered a rapid shallowing of the brittle-ductile transition. The abrupt dyke emplacement and associated heating resulted in weakening of the crust that probably facilitated the continental break-up, which culminated with opening of the Iapetus Ocean.</p>


2008 ◽  
Vol 97 (4) ◽  
pp. 397-413 ◽  
Author(s):  
Scott R. Paterson ◽  
David W. Farris

AbstractThe mechanisms by which Cordilleran plutons are emplaced vary widely. However, the present authors have examined a series of plutons ranging from 2-35 km emplacement depth that have many common features, which suggest that downward transport of host rock is the most important mechanism during magma ascent and pluton emplacement. Many of these Cordilleran plutons preserve gently dipping, unfaulted roofs attached to steep walls bordered by narrow ductile aureoles. Flat lying roof strata commonly roll over into steeply dipping rim monoclines and anticlines that young towards and follow the pluton margin. Field observations suggest that such rim monoclines and anticlines formed due to gravitationally driven roof collapse and channel flow along margins. In the examples in this paper, pluton walls are often comprised of narrow steeply dipping ductile aureoles in which the intensity of strain increases downward. Aureole ductile strains are insufficient to account for the volume of magma emplaced, and are typically <40% of pluton volume. However, when aureole strain is combined with minimum estimates of stoping and host rock rotation during rim monoclines formation, sufficient space can be created. The examples suggest that gravitationally driven downward host rock transport by stoping and rigid rotations along roofs and walls and by focused channel flow by ductile strain along walls are common processes during the rise of Cordilleran plutons, and is one process that contributes to crustal thickening and the growth of crustal roots.


2021 ◽  
Vol 9 ◽  
Author(s):  
Michael O. Day ◽  
Bruce S. Rubidge

The Beaufort Group of the main Karoo Basin of South Africa records two major extinction events of terrestrial vertebrates in the late Palaeozoic. The oldest of these has been dated to the late Capitanian and is characterized by the extinction of dinocephalian therapsids and bradysaurian pareiasaurs near the top of Tapinocephalus Assemblage Zone. Faunal turnover associated with the extinction of dinocephalians is evident in vertebrate faunas from elsewhere in Pangaea but it can be best studied in the Karoo Basin, where exposures of the upper Abrahamskraal and lower Teekloof formations allow continuous sampling across the whole extinction interval. Here we present field data for several sections spanning the Capitanian extinction interval in the southwestern Karoo and discuss recent work to establish its timing, severity, and causes. A large collections database informed by fieldwork demonstrates an increase in extinction rates associated with ecological instability that approach that of the end-Permian mass extinction, and shows significant turnover followed by a period of low diversity. Extinctions and recovery appear phased and show similarities to diversity patterns reported for the end-Permian mass extinction higher in the Beaufort sequence. In the Karoo, the late Capitanian mass extinction coincides with volcanism in the Emeishan Large Igneous Province and may have been partly driven by short-term aridification, but clear causal mechanisms and robust links to global environmental phenomena remain elusive.


2021 ◽  
Author(s):  
Larissa Hansen ◽  
Rachel Healy ◽  
Luz Gomis Cartesio ◽  
David Lee ◽  
David Hodgson ◽  
...  

Scours, and scour fields, are common features on the modern seafloor of deep-marine systems, particularly downstream of submarine channels, and in channel-lobe-transitions-zones. High-resolution images of the seafloor have improved the documentation of the large scale, coalescence, and distribution of these scours in deep-marine systems. However, their scale and high aspect ratio mean they can be challenging to identify in outcrop. Here, we document a large-scale, composite erosion surface from the exhumed deep-marine stratigraphy of Unit 5 from the Permian Karoo Basin succession in South Africa, which is interpreted to be present at the end of a submarine channel.This study utilizes 24 sedimentary logs, 2 cored boreholes, and extensive palaeocurrent and thickness data across a 126 km2 study area. Sedimentary facies analysis, thickness variations and correlation panels allowed identification of a lower heterolithic-dominated part (up to 70 m thick) and an upper sandstone-dominated part (10-40 m thick) separated by an extensive erosion surface. The lower part comprises heterolithics with abundant current and sinusoidal ripples, which due to palaeocurrents, thickness trends and adjacent depositional environments is interpreted as the aggradational lobe complex fringes. The base of the upper part comprises 2-3 medium-bedded sandstone beds interpreted as precursor lobes cut by a 3-4 km wide, 1-2 km long, and up to 28 m deep, high aspect ratio (1:100) composite scour surface. The abrupt change from heterolithics to thick-bedded sandstones marks the establishment of a new sediment delivery system, which may have been triggered by an updip channel avulsion. The composite scour and subsequent sandstone fill support a change from erosion- and bypass-dominated flows to depositional flows, which might reflect increasingly sand-rich flows as a new sediment route matured. This study provides a unique outcrop example with 3D stratigraphic control of the record of a new sediment conduit, and development and fill of a large-scale composite scour surface at the channel mouth, providing a rare insight into how scours imaged on seafloor data can be preserved in the rock record.


Sign in / Sign up

Export Citation Format

Share Document