Comparative Quality of Proteins and Morphological Structures of Gelatin From Sheepskin With Acid and Alkaline Treatment

FOODSCITECH ◽  
2020 ◽  
Vol 3 (2) ◽  
pp. 1
Author(s):  
Muhamad Hasdar ◽  
Mohamamad Jusuf Randi

Sheepskin is one alternative to raw materials for producing gelatin. This study aims to compare the quality of gelatin from sheepskin based on different types of pretreatment solutions used, namely HCl 1,5% solution and NaOH 1,5% solution. Data analysis used t-test to compare two treatment methods. Yield and protein gelatin there is a difference where the treatment of HCl 1,5% solution is higher than the treatment of NaOH 1,5% solution. The brighter visual quality of gelatin colour was produced by HCl 1,5% treatment compared to NaOH 1,5% and commercial gelatin treatments. The results of the microstructure using Scanning Electron Microscopy (SEM) showed that there were still lots of clumps of protein and cavities in the gelatin NaOH 1,5% and commercial gelatin treatments. Gelatin with HCl 1,5% treatment showed the best results.

Author(s):  
J. R. Millette ◽  
R. S. Brown

The United States Environmental Protection Agency (EPA) has labeled as “friable” those building materials that are likely to readily release fibers. Friable materials when dry, can easily be crumbled, pulverized, or reduced to powder using hand pressure. Other asbestos containing building materials (ACBM) where the asbestos fibers are in a matrix of cement or bituminous or resinous binders are considered non-friable. However, when subjected to sanding, grinding, cutting or other forms of abrasion, these non-friable materials are to be treated as friable asbestos material. There has been a hypothesis that all raw asbestos fibers are encapsulated in solvents and binders and are not released as individual fibers if the material is cut or abraded. Examination of a number of different types of non-friable materials under the SEM show that after cutting or abrasion, tuffs or bundles of fibers are evident on the surfaces of the materials. When these tuffs or bundles are examined, they are shown to contain asbestos fibers which are free from binder material. These free fibers may be released into the air upon further cutting or abrasion.


2019 ◽  
Vol 29 (1) ◽  
pp. 1226-1234
Author(s):  
Safa Jida ◽  
Hassan Ouallal ◽  
Brahim Aksasse ◽  
Mohammed Ouanan ◽  
Mohamed El Amraoui ◽  
...  

Abstract This work intends to apprehend and emphasize the contribution of image-processing techniques and computer vision in the treatment of clay-based material known in Meknes region. One of the various characteristics used to describe clay in a qualitative manner is porosity, as it is considered one of the properties that with “kill or cure” effectiveness. For this purpose, we use scanning electron microscopy images, as they are considered the most powerful tool for characterising the quality of the microscopic pore structure of porous materials. We present various existing methods of segmentation, as we are interested only in pore regions. The results show good matching between physical estimation and Voronoi diagram-based porosity estimation.


2017 ◽  
Vol 23 (S1) ◽  
pp. 1266-1267 ◽  
Author(s):  
Barbara Armbruster ◽  
Christopher Booth ◽  
Stuart Searle ◽  
Michael Cable ◽  
Ronald Vane

Microscopy ◽  
2017 ◽  
Vol 66 (6) ◽  
pp. 414-423
Author(s):  
Monalisa Mishra ◽  
Ashutosh Choudhury ◽  
P Sagar Achary ◽  
Harekrushna Sahoo

Abstract Butterflies wings possess different types of scales to perform diverse functions. Each scale has many nano and microstructures, which interferes with light, resulting in unique coloration for each butterfly. Besides coloration, the arrangement of scales further helps in giving better survivability. Thus, analysis of wing pattern provides an overall idea about adaptation and activity of the animal. The current study deciphers the structure and composition of a wing of a pierid butterfly Catopsilia pomona, which remains active at 42°C at which temperature all other butterflies face a tougher task for existence. In order to know the relation between survivability and adaptation in the wing, we have investigated the structural and physical composition of the wing of C. pomona under optical spectroscopy (absorption, reflectance and transmittance) along with microscopy techniques (optical and scanning electron microscopy), which are not described in earlier studies. The current findings reveal unique structural arrangement within scales to provide the best fit to the animal in variable temperature.


2012 ◽  
Vol 620 ◽  
pp. 314-319
Author(s):  
Nur Amira Mamat Razali ◽  
Fauziah Abdul Aziz ◽  
Saadah Abdul Rahman

Hardwood is wood from angiosperm trees. The characteristic of hardwood include flowers, endosperm within seeds and the production of fruits that contain the seeds. This paper aims to discuss the preparation and characterization of cellulose obtained from hardwood. The hardwood Merbau (Intsia bijuga) was chosen as raw material in this study. Alkaline treatment and delignification methods were used for the preparation of cellulose. Acid hydrolysis was employed to produce cellulose nanocrystal (CNC). The treated and untreated samples were characterized using x-ray diffraction (XRD) and field emission scanning electron microscopy (FE-SEM). The final product, from both trated and untreated samples were then compared.


2021 ◽  
Vol 325 ◽  
pp. 181-187
Author(s):  
Martin Nguyen ◽  
Radomír Sokolář

This article examines the influence of fly ash on corrosion resistance of refractory forsterite-spinel ceramics by molten iron as a corrosive medium. Fly ash in comparison with alumina were used as raw materials and sources of aluminium oxide for synthesis of forsterite-spinel refractory ceramics. Raw materials were milled, mixed in different ratios into two sets of mixtures and sintered at 1550°C for 2 hours. Samples were characterized by X-ray diffraction analysis and thermal dilatometric analysis. Crucibles were then made from the fired ceramic mixtures and fired together with iron at its melting point of 1535°C for 5 hours. The corrosion resistance was evaluated by scanning electron microscopy on the transition zones between iron and ceramics. Mixtures with increased amount of spinel had higher corrosion resistance and mixtures with fly ash were comparable to mixtures with alumina in terms of corrosion resistance and refractory properties.


2009 ◽  
Vol 1187 ◽  
Author(s):  
Jakob R Eltzholtz ◽  
Marie Krogsgaard ◽  
Henrik Birkedal

AbstractBiology has evolved several strategies for attachment of sedentary animals. In the bivalves, byssi abound and the best known example being the protein-based byssus of the blue mussel and other Mytilidae. In contrast the bivalve Anomia sp. has a single calcified thread. The byssus is hierarchical in design and contains several different types of structures as revealed by scanning electron microscopy images. The mechanical properties of the byssus are probed by nanoindentation. It is found that the mineralized part of the byssus is very stiff with a reduced modulus of about 67 GPa and a hardness of ˜3.7 GPa. This corresponds to a modulus roughly 20% smaller than that of pure calcite and a hardness that is about 20% larger than pure calcite. The results reveal the importance of microstructure on mechanical performance.


2014 ◽  
Vol 6 ◽  
pp. 752353 ◽  
Author(s):  
Junye Li ◽  
Lifeng Yang ◽  
Weina Liu ◽  
Xuechen Zhang ◽  
Fengyu Sun

In the fields of military and civil uses, some special passages exist in many major parts, such as non-linear tubes. The overall performance is usually decided by the surface quality. Abrasive flow machining (AFM) technology can effectively improve the surface quality of the parts. In order to discuss the mechanism and technology of abrasive flow machining nonlinear tube, the nozzle is picked up as the researching object, and the self-designed polishing liquid is employed to make research on the key technological parameters of abrasive flow machining linear tube. Technological parameters’ impact on surface quality of the parts through the nozzle surface topography and scanning electron microscopy (SEM) map is explored. It is experimentally confirmed that abrasive flow machining can significantly improve surface quality of nonlinear runner, and experimental results can provide technical reference to optimizing study of abrasive flow machining theory.


2017 ◽  
Vol 380 ◽  
pp. 198-211 ◽  
Author(s):  
A. Al Sumait ◽  
C. Delgado ◽  
F. Aldhabib ◽  
X. Sun ◽  
F. Alzubi ◽  
...  

The objective of the study was to optimize the strength and ductility values of the 4330M steel. Optimization was conducted through different types of heat treatments. Tensile testing, hardness testing, optical microscopy, and Scanning Electron Microscopy (SEM) were used to evaluate the mechanical properties and microstructure of the as-received and the heat treated samples. The alloy was provided from two vendors; vendor H and vendor S. Results showed that by increasing the tempering temperatures, strength values decreases, while ductility values remain unchanged. Vendor H samples had higher strength values and much finer grain structure which was revealed only at 5000x magnification.


Sign in / Sign up

Export Citation Format

Share Document