Characterization of High Speed Jet Acoustics Using High-resolution Multi-reference Continuous-scan Acoustic Measurements on a Linear Array

2020 ◽  
Author(s):  
Parthiv N. Shah ◽  
Dimitri Papamoschou
2006 ◽  
Vol 129 (2) ◽  
pp. 136-145 ◽  
Author(s):  
Xiongjun Wu ◽  
Georges L. Chahine

A high speed/high flow test facility was designed and implemented to study experimentally the supercavitating flow behind a projectile nose in a controlled laboratory setting. The simulated projectile nose was held in position in the flow and the cavity interior was made visible by having the walls of the visualization facility “cut through” the supercavity. Direct visualization of the cavity interior and measurements of the properties of the cavity contents were made. Transducers were positioned in the test section within the supercavitation volume to enable measurement of the sound speed and attenuation as a function of the flow and geometry parameters. These characterized indirectly the content of the cavity. Photography, high speed videos, and acoustic measurements were used to investigate the contents of the cavity. A side sampling cell was also used to sample in real time the contents of the cavity and measure the properties. Calibration tests conducted in parallel in a vapor cell enabled confirmation that, in absence of air injection, the properties of the supercavity medium match those of a mixture of water vapor and water droplets. Such a mixture has a very high sound speed with strong sound attenuation. Injection of air was also found to significantly decrease sound speed and to increase transmission.


Author(s):  
Amol Kulkarni ◽  
Amey Vidvans ◽  
Mustafa Rifat ◽  
Gregory Bicknell ◽  
Xi Gong ◽  
...  

The present work delineates a novel and scalable approach to characterization of defects in additively manufactured components. The approach is based on digital image correlation and involves characterization of surface speeds during rigid body rotation of the workpiece, followed by normalization with respect to rotation speed. Towards this, two different imaging sources were tested, viz. smartphone camera and sophisticated high-resolution/high-speed camera. The proposed approach successfully delineated horizontal and vertical notch defects in a simple FDM fabricated component. Accuracy of this approach was tested with concomitant laser based scanning. Some limitations of this approach were discussed.


2017 ◽  
pp. 345-356
Author(s):  
C.-P. Ding ◽  
A. Renaud ◽  
R. Honza ◽  
A. Dreizler ◽  
B. Böhm

2011 ◽  
Vol 130-134 ◽  
pp. 2056-2059 ◽  
Author(s):  
Guo Sheng Xu

In order to improve the precision, speed, integration and reliability of the linear CCD system, A method of data acquisition for high resolution output signal of linear array CCD using FPGA is introduced. The CCD signal acquisition circuit with high speed and high sensitivity is designed based on the combination of FPGA with high-speed A/D conversion chipset to gather the signals of high-speed. The experimental results demonstrated that defects within 50μm~1000μm were inspected effectively by the CCD scanning defects inspection instrument, that this method has a repetition error no more than 2.24 pixels, with high precision and good anti-noise ability.


Author(s):  
D. F. Blake ◽  
L. F. Allard ◽  
D. R. Peacor

Echinodermata is a phylum of marine invertebrates which has been extant since Cambrian time (c.a. 500 m.y. before the present). Modern examples of echinoderms include sea urchins, sea stars, and sea lilies (crinoids). The endoskeletons of echinoderms are composed of plates or ossicles (Fig. 1) which are with few exceptions, porous, single crystals of high-magnesian calcite. Despite their single crystal nature, fracture surfaces do not exhibit the near-perfect {10.4} cleavage characteristic of inorganic calcite. This paradoxical mix of biogenic and inorganic features has prompted much recent work on echinoderm skeletal crystallography. Furthermore, fossil echinoderm hard parts comprise a volumetrically significant portion of some marine limestones sequences. The ultrastructural and microchemical characterization of modern skeletal material should lend insight into: 1). The nature of the biogenic processes involved, for example, the relationship of Mg heterogeneity to morphological and structural features in modern echinoderm material, and 2). The nature of the diagenetic changes undergone by their ancient, fossilized counterparts. In this study, high resolution TEM (HRTEM), high voltage TEM (HVTEM), and STEM microanalysis are used to characterize tha ultrastructural and microchemical composition of skeletal elements of the modern crinoid Neocrinus blakei.


Author(s):  
M. José-Yacamán

Electron microscopy is a fundamental tool in materials characterization. In the case of nanostructured materials we are looking for features with a size in the nanometer range. Therefore often the conventional TEM techniques are not enough for characterization of nanophases. High Resolution Electron Microscopy (HREM), is a key technique in order to characterize those materials with a resolution of ~ 1.7A. High resolution studies of metallic nanostructured materials has been also reported in the literature. It is concluded that boundaries in nanophase materials are similar in structure to the regular grain boundaries. That work therefore did not confirm the early hipothesis on the field that grain boundaries in nanostructured materials have a special behavior. We will show in this paper that by a combination of HREM image processing, and image calculations, it is possible to prove that small particles and coalesced grains have a significant surface roughness, as well as large internal strain.


Author(s):  
H. Takaoka ◽  
M. Tomita ◽  
T. Hayashi

High resolution transmission electron microscopy (HRTEM) is the effective technique for characterization of detailed structure of semiconductor materials. Oxygen is one of the important impurities in semiconductors. Detailed structure of highly oxygen doped silicon has not clearly investigated yet. This report describes detailed structure of highly oxygen doped silicon observed by HRTEM. Both samples prepared by Molecular beam epitaxy (MBE) and ion implantation were observed to investigate effects of oxygen concentration and doping methods to the crystal structure.The observed oxygen doped samples were prepared by MBE method in oxygen environment on (111) substrates. Oxygen concentration was about 1021 atoms/cm3. Another sample was silicon of (100) orientation implanted with oxygen ions at an energy of 180 keV. Oxygen concentration of this sample was about 1020 atoms/cm3 Cross-sectional specimens of (011) orientation were prepared by argon ion thinning and were observed by TEM at an accelerating voltage of 400 kV.


Author(s):  
Margaret L. Sattler ◽  
Michael A. O'Keefe

Multilayered materials have been fabricated with such high perfection that individual layers having two atoms deep are possible. Characterization of the interfaces between these multilayers is achieved by high resolution electron microscopy and Figure 1a shows the cross-section of one type of multilayer. The production of such an image with atomically smooth interfaces depends upon certain factors which are not always reliable. For example, diffusion at the interface may produce complex interlayers which are important to the properties of the multilayers but which are difficult to observe. Similarly, anomalous conditions of imaging or of fabrication may occur which produce images having similar traits as the diffusion case above, e.g., imaging on a tilted/bent multilayer sample (Figure 1b) or deposition upon an unaligned substrate (Figure 1c). It is the purpose of this study to simulate the image of the perfect multilayer interface and to compare with simulated images having these anomalies.


Sign in / Sign up

Export Citation Format

Share Document