scholarly journals Exploring the role and mechanism of COVID-19 apps in fighting the current pandemic

2020 ◽  
Vol 0 ◽  
pp. 1-6
Author(s):  
Karthikeyan P. Iyengar ◽  
Rachit Jain ◽  
David Ananth Samy ◽  
Vijay Kumar Jain ◽  
Raju Vaishya ◽  
...  

As COVID-19 pandemic spread worldwide, policies have been developed to contain the disease and prevent viral transmission. One of the key strategies has been the principle of “‘test, track, and trace” to minimize spread of the virus. Numerous COVID-19 contact tracing applications have been rolled around the world to monitor and control the spread of the disease. We explore the characteristics of various COVID-19 applications and especially the Aarogya Setu COVID-19 app from India in its role in fighting the current pandemic. We assessed the current literature available to us using conventional search engines, including but not limited to PubMed, Google Scholar, and Research Gate in May 2020 till the time of submission of this article. The search criteria used MeSH keywords such as “COVID-19,” “pandemics,” “contact tracing,” and “mobile applications.” A variable uptake of different COVID-19 applications has been noted with increasing enrolment around the world. Security concerns about data privacy remain. The various COVID-19 applications will complement manual contact tracing system to assess and prevent viral transmission. Test, track, trace, and support policy will play a key role in avoidance of a “second wave” of the novel coronavirus severe acute respiratory syndrome coronavirus 2 outbreak.


2020 ◽  
Vol 3 (3) ◽  
pp. 157-159
Author(s):  
P. Dehgani-Mobaraki ◽  
A. Kamber Zaidi ◽  
J.M. Levy ◽  

Over the past several months, an increasing volume of infor- mation has expanded awareness regarding the transmission of SARS-CoV-2, the novel coronavirus associated with COVID-19. Following the pandemic declaration by the World Health Orga- nization (WHO), global authorities immediately took measures to reduce the transmission and subsequent morbidity associa- ted with this highly contagious disease. However, despite initial success in “flattening the curve” of viral transmission, many areas of the world are currently experiencing an increase in com- munity transmission, threatening to replicate the early public health emergencies experienced by Italy (1,2). In addition, the possibility of contact tracing through geosocial applications and public service platforms have been met with variable interest (3). Given current spread and the upcoming influenza season, it is essential that we use our voices as experts in upper airway health and disease to educate and encourage all communities to adopt appropriate protective measures, including the routine use of facemasks.



2020 ◽  
Vol 8 ◽  
Author(s):  
Xuanzhen Cen ◽  
Dong Sun ◽  
Ming Rong ◽  
Gusztáv Fekete ◽  
Julien S. Baker ◽  
...  

Recently, an unprecedented coronavirus pandemic has emerged and has spread around the world. The novel coronavirus termed COVID-19 by the World Health Organization has posed a huge threat to human safety and social development. This mini review aimed to summarize the online education mode and plans for schools to resume full-time campus study in China during COVID-19. Chinese schools have made significant contributions to the prevention and control of the transmission of COVID-19 by adopting online learning from home. However, normal opening and classroom teaching have been affected. For education systems at all levels, online education may be an effective way to make up for the lack of classroom teaching during the epidemic. To protect staff and students from COVID-19, the timing of students returning to full-time campus study needs to be considered carefully. Reviewing and summarizing of the Chinese education system's response to the virus would be of great value not only in developing educational policy but also in guiding other countries to formulate educational countermeasures.



Author(s):  
Md. Tanvir Rahman ◽  
Taslima Ferdaus Shuva ◽  
Risala Tasin Khan ◽  
Mostofa Kamal Nasir

The year 2020 will always be in the history of mankind due to the deadly outbreak of COVID-19. Many people are already infected around the world due to the spreading of this novel coronavirus. The virus mainly replicates through close contacts, so there are no other alternatives than to keep social distance, use proper safety gear, and maintain self-quarantine. As a result, the growth of the virus has changed the lifestyle of every individual to a great extent. It is also compelling the Governments to dictate strict lock-downs of the highly affected areas, impose work-from-home approaches where applicable, enforce strict social distancing standards, and so on. Some of the countries are also using smartphone-based applications for contact tracing to track the possibly infected individuals. However, there is a lot of discussion around the world about these contact tracing applications and also about their architecture, attribute, data privacy, and so on. In this paper, we have provided a comprehensive review of these contact tracing approaches in terms of their system architecture, key attributes, and data privacy. We have also outlined a list of potential research directions that can improvise the tracing performance while maintaining the privacy of the user to a great extent.



An infectious disease caused by a novel coronavirus called COVID-19 has raged across the world since December 2019. The novel coronavirus first appeared in Wuhan, China, and quickly spread to Asia and now many countries around the world are affected by the epidemic. The deaths of many patients, including medical staff, caused social panic, media attention, and high attention from governments and world organizations. Today, with the joint efforts of the government, the doctors and all walks of life, the epidemic in Hubei Province has been brought under control, preventing its spread from affecting the lives of the people. Because of its rapid spread and serious consequences, this sudden novel coronary pneumonia epidemic has become an important social hot spot event. Through the analysis of the novel coronary pneumonia epidemic situation, we can also have a better understanding of sudden infectious diseases in the future, so that we can take more effective response measures, establish a truly predictable and provide reliable and sufficient information for prevention and control model.



2020 ◽  
Vol 148 ◽  
Author(s):  
Chen Ling ◽  
Xianjie Wen

Abstract The outbreak of novel coronavirus pneumonia (coronavirus disease 2019 (COVID-19)), declared as a ‘global pandemic’ by the World Health Organization (WHO), is a public health emergency of international concern (PHEIC). The outbreak in multiple locations shows a trend of accelerating spread around the world. China has taken a series of powerful measures to contain the spread of the novel coronavirus. In response to the COVID-19 pandemic, in addition to actively finding effective treatment drugs and developing vaccines, it is more important to identify the source of infection at the community level as soon as possible to block the transmission path of the virus to prevent the spread of the pandemic. The implementation of grid management in the community and the adoption of precise management and control measures to reduce unnecessary personnel movement can effectively reduce the risk of pandemic spread. This paper mainly describes that the grid management mode can promote the refinement and comprehensiveness of community management. As a management system with potential to improve the governance ability of community affairs, it may be helpful to strengthen the prevention and control of the epidemic in the community.



2020 ◽  
Vol 9 (2) ◽  
pp. 462 ◽  
Author(s):  
Biao Tang ◽  
Xia Wang ◽  
Qian Li ◽  
Nicola Luigi Bragazzi ◽  
Sanyi Tang ◽  
...  

Since the emergence of the first cases in Wuhan, China, the novel coronavirus (2019-nCoV) infection has been quickly spreading out to other provinces and neighboring countries. Estimation of the basic reproduction number by means of mathematical modeling can be helpful for determining the potential and severity of an outbreak and providing critical information for identifying the type of disease interventions and intensity. A deterministic compartmental model was devised based on the clinical progression of the disease, epidemiological status of the individuals, and intervention measures. The estimations based on likelihood and model analysis show that the control reproduction number may be as high as 6.47 (95% CI 5.71–7.23). Sensitivity analyses show that interventions, such as intensive contact tracing followed by quarantine and isolation, can effectively reduce the control reproduction number and transmission risk, with the effect of travel restriction adopted by Wuhan on 2019-nCoV infection in Beijing being almost equivalent to increasing quarantine by a 100 thousand baseline value. It is essential to assess how the expensive, resource-intensive measures implemented by the Chinese authorities can contribute to the prevention and control of the 2019-nCoV infection, and how long they should be maintained. Under the most restrictive measures, the outbreak is expected to peak within two weeks (since 23 January 2020) with a significant low peak value. With travel restriction (no imported exposed individuals to Beijing), the number of infected individuals in seven days will decrease by 91.14% in Beijing, compared with the scenario of no travel restriction.



2021 ◽  
Vol 6 (4) ◽  
pp. 611-617
Author(s):  
MA Momith Azad ◽  
Abdullah Al Mahmud ◽  
Md Shahidul Islam ◽  
Ahmed Iqbal Gouhar

The world has been fighting against a pandemic for more than a year, caused by a highly infectious disease named COVID-19 rooted by the novel coronavirus 2019. It has already been spread out in most of the countries and a few of which are experiencing second wave. The Novel coronavirus-2019 (SARS CoV-2) incurred more than 1.6 million deaths and 76 million cases in the world population (till 20 December 2020). Although some vaccines are being launched, however, their effectivity and availability are still unknown. Maintaining personal hygiene and social distance are the best way of protection. Hand washing is the utmost recommendation for the maintenance of personal hygiene since hands can be contaminated by the droplets easily. Particularly, in pandemic situations, it is crucial to interrupt the transmission chain of the virus by the practice of proper hand sanitization. The hand sanitization solely depends on the use of effective hand disinfecting agents. Natural formula-based disinfectants can be preferable to chemicals because of higher efficacy and lower adverse effects. Unani medicine is the system based on natural formulations. „Raihan‟ (common sage, Salvia officinalis) is frequently used in Unani medicine for its higher disinfectant role. Common sage extract with ethanol may provide superior efficacy against COVID-19. In this article, we presented information on common sage and its potentiality using with ethanol as a natural, skin-friendly hand sanitizer to prevent harmful action of chemical mixing synthetic sanitizer. Asian J. Med. Biol. Res. December 2020, 6(4): 611-617



Author(s):  
Parinaz Tabari ◽  
Mitra Amini ◽  
Mohsen Moghadami ◽  
Mahsa Moosavi

The outbreak of Coronavirus disease 2019 (COVID-19) has posed a significant concern in many countries due to the rapid rate of transmission between humans. Taking advantage of the experience of the last epidemics in 2002 Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV) and 2012 Middle East Respiratory Syndrome Coronavirus (MERS-CoV), some regions of the world were well- prepared for the new outbreak. However, other countries needed to be adapted to the situation promptly. Many management strategies were established, and some restrictions were introduced in some regions. In this review, we aimed to determine countries’ public responses to the epidemic of COVID-19 and how they developed administrative approaches towards the outbreak.



2020 ◽  
Vol 148 ◽  
Author(s):  
S. Saraswathi ◽  
A. Mukhopadhyay ◽  
H. Shah ◽  
T. S. Ranganath

Abstract We used social network analysis (SNA) to study the novel coronavirus (COVID-19) outbreak in Karnataka, India, and to assess the potential of SNA as a tool for outbreak monitoring and control. We analysed contact tracing data of 1147 COVID-19 positive cases (mean age 34.91 years, 61.99% aged 11–40, 742 males), anonymised and made public by the Karnataka government. Software tools, Cytoscape and Gephi, were used to create SNA graphics and determine network attributes of nodes (cases) and edges (directed links from source to target patients). Outdegree was 1–47 for 199 (17.35%) nodes, and betweenness, 0.5–87 for 89 (7.76%) nodes. Men had higher mean outdegree and women, higher mean betweenness. Delhi was the exogenous source of 17.44% cases. Bangalore city had the highest caseload in the state (229, 20%), but comparatively low cluster formation. Thirty-four (2.96%) ‘super-spreaders’ (outdegree ⩾ 5) caused 60% of the transmissions. Real-time social network visualisation can allow healthcare administrators to flag evolving hotspots and pinpoint key actors in transmission. Prioritising these areas and individuals for rigorous containment could help minimise resource outlay and potentially achieve a significant reduction in COVID-19 transmission.



Author(s):  
Ebrahim Sahafizadeh ◽  
Samaneh Sartoli

AbstractBackgroundAs reported by Iranian governments, the first cases of coronavirus (COVID-19) infections confirmed in Qom, Iran on February 19, 2020 (30 Bahman 1398). The number of identified cases afterward increased rapidly and the novel coronavirus spread to all provinces of the country. This study aimed to fit an epidemic model to the reported cases data to estimate the basic reproduction number (R0) of COVID-19 in Iran.MethodsWe used data from February 21, 2020, to April 21, 2020, on the number of cases reported by Iranian governments and we employed the SIR (Susceptible-Infectious-Removed) epidemic spreading model to fit the transmission model to the reported cases data by tuning the parameters in order to estimate the basic reproduction number of COVID-19 in Iran.ResultsThe value of reproduction number was estimated 4.86 in the first week and 4.5 in the second week. it decreased from 4.29 to 2.37 in the next four weeks. At the seventh week of the outbreak the reproduction number was reduced below one.ConclusionsThe results indicate that the basic reproduction number of COVID-19 was significantly larger than one in the early stages of the outbreak. However, implementing social distancing and preventing travelling on Nowruz (Persian New Year) effectively reduced the reproduction number. Although the results indicate that reproduction number is below one, it is necessary to continue social distancing and control travelling to prevent causing a second wave of outbreak.



Sign in / Sign up

Export Citation Format

Share Document