scholarly journals DNA Damaging Agents in Chemical Biology and Cancer

2020 ◽  
Vol 74 (9) ◽  
pp. 693-698
Author(s):  
Basilius Sauter ◽  
Dennis Gillingham

Despite their toxicity, DNA alkylating drugs remain a cornerstone of anticancer therapy. The classical thinking was that rapidly dividing tumour cells left more of its DNA in an exposed single-stranded state, making these rapidly dividing cells more susceptible to alkylating drugs. As our understanding of DNA repair pathways has matured it is becoming clear that compromised DNA repair – a hallmark of cancer – plays a role as well in defining the therapeutic window of these toxic drugs. Hence, although new alkylating motifs are unlikely to progress through the clinic, the legacy of these medicines is that we now understand the therapeutic potential of targeting DNA damage repair pathways. Here we look at the history of alkylating agents as anticancer drugs, while also summarizing the different mechanistic approaches to covalent DNA modification. We also provide several case studies on how insights into compromised DNA repair pathways are paving the way for potent and less toxic targeted medicines against the DNA damage response.

2017 ◽  
Vol 35 (4_suppl) ◽  
pp. 308-308
Author(s):  
Talia Golan ◽  
Sharon Halparin ◽  
Chani Stossel ◽  
Maria Raitses-Gurevich ◽  
Dikla Atias ◽  
...  

308 Background: Approximately 15% of PDAC tumors display DNA damage repair (DDR) deficiency. Germline BRCA (gBRCA) mutation serves as a robust biomarker for the DDR deficiency. A subset of patients displays a similar clinical phenotype but lack the gBRCA mutation. Identification of these BRCA-like subset of patients remains a challenge and an alternative approach may include DDR functional assays. Here we suggest loss of the ATM protein as one of the biomarkers for the identification of the DDR deficiency signature in PDAC. Methods: Patients were identified from the Sheba pancreatic cancer database based on strong family/personal history of BRCA- associated cancers or a durable response to platinum containing regimens ( ≥ 6 month) or harboring germline/somatic mutations in the DNA repair pathway (excluding gBRCA mutation). Archival FFPE blocks of primary tumors/metastatic lesions were used to explore ATM protein expression by IHC. Nuclear staining was regarded as positive. Tumor infiltrating lymphocytes served as an internal positive control. ATM loss was defined as less than10% neoplastic nuclear staining at any intensity in the presence of positive lymphocytes staining. Results: We identified 53 patients with DDR deficiency phenotype between 2014-2016 from the Sheba PDAC database (n = 250). Median age at diagnosis was 65 years (46-81) and the majority were female (62%). 47% were diagnosed at stage I/II and 53% stage IV. In the subgroup of patients with DDR deficiency phenotype, 55% displayed a family history of BRCA-associated cancers, 19% had a personal history of malignancy and23% had known mutation in DNA repair pathway. 23/53 identified subjects have been analyzed to date. We identified 52% loss of ATM in the analyzed group (n = 23). Conclusions: Loss of ATM in an unselected PDAC population is 12% (H. Kim et al, 2014). Our data demonstrate that 52% of the highly selected subgroup of PDAC patients (DDR deficiency phenotype) was found to have loss of ATM protein expression, suggesting it to be one of the biomarker for DDR signature. Identification of these patients, based on ATM protein expression profile may lead to personalized treatment options.


2019 ◽  
Vol 37 (15_suppl) ◽  
pp. 3111-3111
Author(s):  
Biswajit Das ◽  
Yvonne A. Evrard ◽  
Li Chen ◽  
Rajesh Patidar ◽  
Tomas Vilimas ◽  
...  

3111 Background: Patient-derived xenografts (PDXs) are increasingly being used in translational cancer research for preclinical drug efficacy studies. The National Cancer Institute (NCI) has developed a Patient-Derived Models Repository (NCI PDMR; pdmr.cancer.gov ) of PDXs with clinical annotation, proteomics, and comprehensive genomic datasets to facilitate these studies. Here, we present an integrative genomic, transcriptomic, and proteomic analysis of critical signaling and DNA damage repair pathways in these PDX models, which represent 9 common and multiple rare tumor histologies. Methods: 304 PDX models from 294 patients were established from various solid tumor histologies from patients with primary or metastatic cancer. Whole Exome Sequencing, RNA-Seq and Reverse Phase Protein Array (RPPA) were performed on 2-9 PDXs per model across multiple passages. An integrative workflow was applied on multiple data sets to detect pathway activation. Results: We profiled 10 signaling and 5 DNA repair pathways in the PDMR dataset. We observed that: (i) a large fraction (40%) of PDX models have at least 1 targetable mutation in the RTK/RAS and/or PIK3CA pathways; (ii) 131 models (45%) have putative driver and oncogenic mutations and copy number variants (CNVs) in the WNT, TGFRb , NRF2 and NOTCH pathways. In addition, 17% of PDX models have targetable mutations in DNA damage repair pathways and 20 PDMR models have a DNA mismatch repair defect (MSI-H). We confirmed activation of the signaling pathways in a subset of PDX models by pathway enrichment analysis on gene expression data from RNASeq and phosphoprotein-specific antibody binding data from RPPA. Activation of DNA repair processes was confirmed by enrichment of relevant mutational signatures and loss of heterozygosity in these PDX models. Conclusions: Genomic analysis of NCI PDMR models revealed that a large fraction have clinically relevant somatic alterations in key signaling and DNA damage repair pathways. Further integrative analyses with matched transcriptomic and proteomic profiles confirmed pathway activation in a subset of these models, which may prioritize them for preclinical drug studies.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 4348-4348
Author(s):  
Jacob P. McCoy ◽  
Bernice Leung ◽  
Bonnie W Lau

Abstract Introduction: Fanconi Anemia (FA) is a hereditary disorder characterized by deficiencies in DNA damage repair and genome instability with a high propensity for bone marrow failure (BMF) and malignancies such as acute myeloid leukemia (AML). Clinically, FA patients experience greater toxicity than non-FA patients when treated with cytotoxic chemotherapy used for AML treatment, so there is a need for alternative treatments to be developed for FA-mutated AML. Poly (ADP-ribose) polymerase 1 (PARP1) is an important enzyme involved in the recognition and repair of DNA breaks. There has been recent clinical success in treating cancers with defective DNA damage repair with PARP inhibitors, an example of synthetic lethality. Therefore we hypothesize that PARP inhibition (PARPi) is an effective strategy for treating FA-mutated AML. Recent studies have shown that PARP1 is overexpressed in many cancers, including AML, and that higher PARP1 expression is associated with worse patient outcomes. Here, we investigate the anti-tumor effects of a PARP inhibitor, olaparib, on FA-mutated and wild-type (WT) AML cells and investigate the activity of downstream DNA repair pathways in response to PARPi. Methods/Results: To determine the effects of PARPi on AML and FA-mutated AML cells in vitro, we treated four cell lines, one FA-wild type AML line and three patient-derived FA-mutated AML lines, with olaparib for 1, 4, 8, 24, and 48 hours. Preliminary data suggest that olaparib treatment decreases protein expression of both PARP1 and PAR (from activation of PARP) compared to vehicle controls. To evaluate the effect of PARPi on DNA damage in AML we measured γH2AX expression by western blotting and immunofluorescence, and found that, although γH2AX expression was not significantly increased in FA-wild type AML cells, there was a significant increase in γH2AX expression in SB1685 FA-mutated AML cells treated with olaparib compared to controls after 4 hours of treatment (p-value < 0.05). To further evaluate the ability of olaparib to inhibit DNA damage repair, we treated our cells with olaparib and performed single-cell alkaline electrophoresis COMET assay. We found that, while the WT cell line was able to repair its DNA over time (indicated by lower levels of DNA damage after 48 hours of olaparib exposure compared to earlier time points), our FA-mutated AML cell lines had more DNA damage after 48 hours of treatment compared to controls. These data suggest that, while cells proficient in DNA repair are capable of repairing DNA damage even when exposed to PARPi, cells that have mutations in their ability to repair DNA damage are not only less able to repair DNA damage over time but also show increased DNA damage over time when exposed to PARPi. To better understand the effects of this increase in DNA damage, we treated our cells with olaparib and assayed for cell viability over 96 hours. We found that, while WT AML cells did not have significantly decreased cell viability after 96 hours, FA-mutated cell lines trended towards significant decrease in cell viability at 96 hours. These cell lines were also stained with Annexin V to investigate apoptotic activity. Our results indicate that olaparib is able to induce apoptosis in our FA-mutated cells after 24 hours of treatment and that, as treatment continues, the percent of Annexin V-positive cells increases compared to controls. To investigate downstream DNA damage response to PARPi, we treated our cells with olaparib and analyzed the expression of DNA Ligase III, Mre11, XRCC1, and Rad51-enzymes involved in various DNA repair pathways. We found that expression levels of XRCC1 increased over 48 hours in our WT AML cells, suggesting a response to the DNA damaging effects of PARPi. In our FA-mutated SB1685 cells, we found a decrease in XRCC1, DNA Ligase III, and Rad51. The expression levels of these enzymes in the other FA-mutated cell lines were more variable, suggesting that the impact of PARPi on downstream DNA repair pathways may be different across different cell lines. Conclusions: Our data suggest that PARP inhibition may be a potential therapy for the treatment of acute myeloid leukemia. In particular, leukemia with mutations in DNA repair mechanisms may be more responsive to PARP inhibition due to resulting DNA damage and synthetic lethality. Thus, PARP inhibitors have the potential to be an effective therapeutic strategy for the treatment of FA-mutated AML. Disclosures No relevant conflicts of interest to declare.


2020 ◽  
Vol 10 ◽  
Author(s):  
Joshua T. Burgess ◽  
Maddison Rose ◽  
Didier Boucher ◽  
Jennifer Plowman ◽  
Christopher Molloy ◽  
...  

Diabetes ◽  
2019 ◽  
Vol 68 (Supplement 1) ◽  
pp. 366-OR
Author(s):  
GRACE H. YANG ◽  
JEE YOUNG HAN ◽  
SUKANYA LODH ◽  
JOSEPH T. BLUMER ◽  
DANIELLE FONTAINE ◽  
...  

Cancers ◽  
2019 ◽  
Vol 11 (9) ◽  
pp. 1289 ◽  
Author(s):  
Xing Bian ◽  
Wenchu Lin

Small cell lung cancer (SCLC), accounting for about 15% of all cases of lung cancer worldwide, is the most lethal form of lung cancer. Despite an initially high response rate of SCLC to standard treatment, almost all patients are invariably relapsed within one year. Effective therapeutic strategies are urgently needed to improve clinical outcomes. Replication stress is a hallmark of SCLC due to several intrinsic factors. As a consequence, constitutive activation of the replication stress response (RSR) pathway and DNA damage repair system is involved in counteracting this genotoxic stress. Therefore, therapeutic targeting of such RSR and DNA damage repair pathways will be likely to kill SCLC cells preferentially and may be exploited in improving chemotherapeutic efficiency through interfering with DNA replication to exert their functions. Here, we summarize potentially valuable targets involved in the RSR and DNA damage repair pathways, rationales for targeting them in SCLC treatment and ongoing clinical trials, as well as possible predictive biomarkers for patient selection in the management of SCLC.


2021 ◽  
Author(s):  
Elena K. Zaharieva ◽  
Megumi Sasatani ◽  
Kenji Kamiya

We present time and dose dependencies for the formation of 53BP1 and γH2AX DNA damage repair foci after chronic radiation exposure at dose rates of 140, 250 and 450 mGy/day from 3 to 96 h, in human and mouse repair proficient and ATM or DNA-PK deficient repair compromised cell models. We describe the time/dose-response curves using a mathematical equation which contains a linear component for the induction of DNA damage repair foci after irradiation, and an exponential component for their resolution. We show that under conditions of chronic irradiation at low and medium dose rates, the processes of DNA double-strand breaks (DSBs) induction and repair establish an equilibrium, which in repair proficient cells manifests as a plateau-shaped dose-response where the plateau is reached within the first 24 h postirradiation, and its height is proportionate to the radiation dose rate. In contrast, in repair compromised cells, where the rate of repair may be exceeded by the DSB induction rate, DNA damage accumulates with time of exposure and total absorbed dose. In addition, we discuss the biological meaning of the observed dependencies by presenting the frequency of micronuclei formation under the same irradiation conditions as a marker of radiation-induced genomic instability. We believe that the data and analysis presented here shed light on the kinetics of DNA repair under chronic radiation and are useful for future studies in the low-to-medium dose rate range.


2019 ◽  
Vol 316 (3) ◽  
pp. C299-C311 ◽  
Author(s):  
Jing Luo ◽  
Zhong-Zhou Si ◽  
Ting Li ◽  
Jie-Qun Li ◽  
Zhong-Qiang Zhang ◽  
...  

Hepatocellular carcinoma (HCC) is known for its high mortality rate worldwide. Based on intensive studies, microRNA (miRNA) expression functions in tumor suppression. Therefore, we aimed to evaluate the contribution of miR-146a-5p to radiosensitivity in HCC through the activation of the DNA damage repair pathway by binding to replication protein A3 (RPA3). First, the limma package of R was performed to differentially analyze HCC expression chip, and regulative miRNA of RPA3 was predicted. Expression of miR-146a-5p, RPA3, and DNA damage repair pathway-related factors in tissues and cells was determined. The effects of radiotherapy on the expression of miR-146a-5p and RPA3 as well as on cell radiosensitivity, proliferation, cell cycle, and apoptosis were also assessed. The results showed that there exists a close correlation between miR-146a and the radiotherapy effect on HCC progression through regulation of RPA3 and the DNA repair pathway. The positive rate of ATM, pCHK2, and Rad51 in HCC tissues was higher when compared with that of the paracancerous tissues. SMMC-7721 and HepG2 cell proliferation were significantly inhibited following 8 Gy 6Mv dose. MiR-146a-5p restrained the expression of RPA3 and promoted the expression of relative genes associated with the DNA repair pathway. In addition, miR-146a-5p overexpression suppresses cell proliferation and enhances radiosensitivity and cell apoptosis in HCC cells. In conclusion, the present study revealed that miR-146a-5p could lead to the restriction of proliferation and the promotion of radiosensitivity and apoptosis in HCC cells through activation of DNA repair pathway and inhibition of RPA3.


Sign in / Sign up

Export Citation Format

Share Document