Optimization of hammer grinder for white lupine “Dega” processing

Author(s):  
В.М. Косолапов ◽  
С.И. Тютюнов ◽  
А.Э. Ставцев ◽  
С.В. Зверев

Исследования проведены в 2019 году в лаборатории «Технология и техника мукомольно-крупяного производства» ВНИИ зерна и продуктов его переработки – филиала ФГБНУ «ФНЦ пищевых систем им. В. М. Горбатова» РАН. В качестве объекта исследований использовали зерно белого люпина сорта Дега. Эксперименты по изучению условий измельчения зерна проводились на лабораторной молотковой дробилке с регулируемой частотой вращения ротора. Рассматривалось влияние влажности зерна, скорости молотков и диаметра отверстий рабочего сита дробилки на выход крупки и содержание в ней недоруша (зёрен и частиц с остатками оболочки, крупных частей неотвеянной оболочки). Использование простой технологической схемы обрушения зерна белого люпина на базе молотковой дробилки позволило получить до 70% крупки с повышенным содержанием белка и низким содержанием клетчатки. С ростом скорости молотков и уменьшением диаметра отверстий рабочего сита дробилки выход крупки снижался, что объяснимо ростом доли мелкой фракции, которая отвеивается при пневмосепарации. Крупка представляет из себя частицы ядра с недорушем, а относы являются смесью дроблёной оболочки с мучкой — мелкой фракцией дробленого ядра. Основная доля мучки ядра была сосредоточена во фракции меньше 1,5–2,0 мм, в которой содержится больше белка. Данная фракция составляла около половины массы относов или около 15% от массы зерна. Наличие недоруша в крупке повышало содержание в ней клетчатки и снижало содержание белка. С ростом влажности и диаметра отверстий рабочего сита дробилки содержание недоруша возрастало, а при росте скорости — падало. При фиксированной влажности содержание недоруша можно снизить за счёт повышения скорости удара (увеличения числа оборотов) или уменьшения диаметра отверстий рабочего сита дробилки, но и тот и другой метод повышают энергозатраты. При возрастании скорости удара росла и производительность. The research was conducted in 2019. Hammer grinder with adjustable rotor speed was used to crush the grain of white lupine “Dega”. The effects of grain water content, crushing speed and sieve size were analyzed on grain crushing and hulling as well as the proportion of unhulled grain. This technology resulted in up to 70% of crushed hulled grain rich in protein but poor in fiber. Increase in hammer speed and decrease in sieve size negatively affected the proportion of crushed grain due to the high content of fine fractions discarded further via pneumatic separation. Crushed hulled grain is normally combined with unhulled grain. The mixture of crushed hulls and fine particles of crushed grain are to be separated. Most of the bran was found in the fraction of 1.5–2.0 mm containing more protein. This fraction amounted to 15% of grain mass and 50% of the mass to be discarded. Unhulled grain mixed with crushed hulled grain increased fiber content in the mixture but reduced protein concentration. Higher grain water content and larger sieve size increased the amount of unhulled grain, while higher hammer speed decreased its fraction. Higher hammer speed as well as smaller sieve size reduce the content of unhulled grain but increased energy costs under constant grain water content. Increase in hammer speed improved the capacity of the grinder.

2021 ◽  
Author(s):  
Christine Fischer ◽  
Murray Lark ◽  
Johanna C. Metzger ◽  
Thomas Wutzler ◽  
Anke Hildebrandt

<div> <p>This study investigates whether and how vegetation cover affects the spatial heterogeneity and vertical penetration of water through the Upper Critical Zone (UCZ). We assessed rainfall, throughfall and soil water contents on a 1‐ha temperate mixed beech forest plot in Germany. Throughfall and soil water content in two depths (7.5 cm and 27.5 cm) were measured on an event basis during the 2015 - 2016 growing season in independent high‐resolution stratified random designs. We calculated the increase of soil water content (Δθ) due to the rainfall by the difference between measurements at the beginning (pre-event) and the maximum soil water content after the end of rainfall event (post-event). Since throughfall and soil water content cannot be assessed at the same location, we used kriging to derive the throughfall values at the locations where soil water content was measured. We explore the spatial variation and temporal stability of throughfall and soil water content and evaluate the effects of throughfall, soil properties (field capacity and air capacity), and vegetation parameters (next tree distance) on soil water content variability.</p> <p>Throughfall patterns were related to canopy density although correlation length decreased with increasing event size. Temporal stability was high, leading to persistently high and lower input locations across rainfall events.</p> <p>A linear mixed effect model analysis confirmed that the soil water content increase due to precipitation depended on throughfall patterns, in that more water was stored in the soil where throughfall was enhanced. This was especially the case in large events and in both investigated soil depths. However, we also identified additional factors that enhanced or decreased water storage in the soil, and probably indicate fast drainage and runoff components. Locations with low topsoil water content tended to store less of the available water, indicating the role of preferential flow. In contrast in subsoil, locations with high water content, and probably poor drainage, stored less water, indicating lateral flow. Also, distance to the next tree and air capacity modified soil water storage.</p> <p>Spatial soil water content patterns shortly before a rainfall event (pre-event conditions) seem to be a key factor in soil water content increase, and also explained much of soil water content shortly after the rainfall event. Pre-event soil water content was mostly driven by random local effects, probably microtopography and root water uptake, which were not quantified in this study. The remaining spatial variation was explained by air capacity in both soil layers, indicating the role of macroporosity.</p> <p>Our findings show at the same time systematic patterns of times and locations where the soil capacity to store water is reduced and water probably conducted quickly to greater depth. Not only soil moisture patterns but also deeper percolation may depend on small scale spatial heterogeneity of canopy input patterns.</p> </div>


2012 ◽  
Vol 446-449 ◽  
pp. 1661-1665
Author(s):  
Jian Cheng Sun ◽  
Zi Jia ◽  
Cheng Zhi Xiao

The interface interaction between geogrid and soil is one of key issues on stability of geosynthetic-reinforced soil structures. Comparative analysis of properties of geogrid-clay interface under the different kinds of geogrid, different normal stresses, speeds of pullout and water contents of clay are conducted by medium-sized pullout tests. The tests results showed that ultimate pullout force of geogrid, interfacial cohesion and frictional coefficient are significantly affected by various water contents of clay. Ultimate pullout forces of geogrid tending to remarkably difference when subject to different normal stresses at lower water contents, and frictional coefficient of interface decrease with the increase of water content, interfacial cohesion has a tendency to increase followed by decreasing with increase of water contents. Moreover, the curves of load and displacement possess three piecewise consisting of linear increase, non-linear increase and ultimate pullout, and as water content increase interval nonlinear changing stage is not conspicuous.


2021 ◽  
Vol 3 (2) ◽  
pp. 44-51
Author(s):  
Talal Masoud ◽  
Abdulrazzaq Jawish Alkherret

  In this study for factors effecting the swelling pressure of jerash expansive soils were investigated in this study, effect of initial dry density and effect of initial water content on the jerash expansive soil were investigated.It show that as the initial dry density decrease from 1.85 gm/cm3  to1.25 gm/cm3 , the swelling pressure also decrease are from 3.1  to 0.25gm/cm2   also it show that as the initial water content increase from 0%to 15% , the swelling pressure of jerash expansive soil decrease from 2.65 gm/cm2  to 1.35 gm/cm2  .  


2017 ◽  
Vol 2017 ◽  
pp. 1-12 ◽  
Author(s):  
Jifeng Liu ◽  
Huizhi Zhang

In order to reveal water content influence on shear strength, swelling, and creep properties of red-layers in Guangzhou Metro, Southern China, the typical red-layers rock and soil specimens were experimentally studied by direct shear test, UU triaxial test, swelling test, and creep test, and the measured data were analyzed. The results showed that soil internal friction angle exponentially decreased with the water content increase and cohesion in accordance with the Gaussian function firstly increased and then decreased with the increase of water content. Expansion rate significantly decreased with the initial water content increase. The red sandstone had very strong isotropic expansion and disintegration properties. The mechanism of water content effect on red-layers properties was water induced microstructures and mineral compositions change which caused the macro physical and mechanical characteristics degradation. The results should provide the reference for further research for water induced damage mechanism or creep damage control of red-layers in engineering practice.


2021 ◽  
Author(s):  
Milan Vraneš ◽  
◽  
Jovana Panić ◽  
Snežana Papović ◽  
Teodora Teona Borović ◽  
...  

In this work, the absorption spectra of cobalt(II) nitrate and bromide complexes in the composition 0.3Ca(NO3)2 – 0.7NH4NO3 – H2O have been investigated in the 400-800 nm range of wavelength at T = 328.15 K and atmospheric pressure P = 101.3 kPa. Spectra were recorded in solutions with variable water content (R = H2O/salt mole ratio; R = 1.0, 1.2 and 1.6). The blue shift of the absorption maximum with the water content increase (R) suggest simultaneous coordination by water molecules and nitrate ions. From an analysis of the spectra, it can be concluded that the following: [Co(NO3)4(H2O)2]2−, [Co(NO3)2Br2]2− and [CoBr4]2− complexes were formed. The overall stability constants of these complexes species spectra were calculated at T = 328.15 K.


2021 ◽  
Vol 3 (2) ◽  
pp. 74-80
Author(s):  
Talal Masoud

The results of the direct shear test on Jerash expansive soil show the effect of the initial water content on the cohesion (c) and on the angel of internal friction ( ) [shear strength parameters].it show that, as the initial water increase, the cohesion (c) of Jerash expansive soil also increase up to the shrinkage limit, after that increase of water even small amount, decrease the cohesion of the soil. On the other hand, the results of direct shear test show also  that as the water content increase, the angle of internal friction ( )remain unchanged up to shrinkage limit , any increase of water cause a large decrease on the angle of internal friction of Jerash expansive soil.


1993 ◽  
Vol 180 (1) ◽  
pp. 311-314 ◽  
Author(s):  
E. K. Stabenau ◽  
T. A. Heming

Hydration of CO2 yields HCO3- via the reaction: CO2 + H2O = H2CO3 = HCO3- + H+ = CO32- + 2H+. (1) Acid-base physiologists traditionally simplify the reaction by omitting the H2CO3 term and lumping all ionic CO2 species into the HCO3- term. The simplified reaction forms the basis for the familiar Henderson-Hasselbalch equation of the CO2-HCO3- buffer system: pH = pKa + log([HCO3-]/(alpha)CO2PCO2), (2) where (alpha)CO2 is the solubility coefficient relating [CO2] and PCO2 (Henry's Law). The apparent pK (pKa) in this equation lacks a rigorous thermodynamic definition. Instead, it is an empirical factor relating pH, the product of (alpha)CO2 and PCO2, and the apparent [HCO3-] (i.e. the sum of all ionic CO2 species). (alpha)CO2 and pKa are sensitive to the temperature, pH and/or the ionic strength of the reaction medium. (alpha)CO2 and pKa of normal mammalian blood plasma have been well defined over a range of temperatures and pH values (e.g. Severinghaus, 1965; Siggaard-Andersen, 1974; Reeves, 1976). These mammalian values are commonly used in analyses of the acid-base status of non- mammalian species, despite evidence that such practices can produce misleading results (Nicol et al. 1983). As an alternative, Heisler (1984; erratum in Heisler, 1986) developed complex equations for (alpha)CO2 (mmol l-1 mmHg-1) (1 mmHg=133.22 Pa) and pKa that are purported to be generally applicable to aqueous solutions (including body fluids) between 0 and 40 °C and incorporate the molarity of dissolved species (Md), solution pH, temperature (T, °C), sodium concentration ([Na+], mol l-1), ionic strength of nonprotein ions (I, mol l-1) and protein concentration ([Pr], g l-1): (alpha)CO2 = 0.1008 - 2.980 × 10–2Md + (1.218 × 10-3Md - 3.639 × 10-3)T - (1.957 × 10-5Md - 6.959 × 10-5)T2 + (7.171 × 10-8Md - 5.596 × 10-7)T3. (3) pKa = 6.583 - 1.341 × 10-2T + 2.282 × 10-4T2 - 1.516 × 10-6T3 - 0.341I0.323 - log{1 + 3.9 × 10-4[Pr] + 10A(1 + 10B)}, (4) where A = pH - 10.64 + 0.011T + 0.737I0.323 and B = 1.92 - 0.01T - 0.737I0.323 + log[Na+] + (0.651 - 0.494I)(1 + 0.0065[Pr]). Experimental validation of these equations has not appeared in the literature to date. We determined the (alpha)CO2 and pKa of blood plasma from Kemp's ridley sea turtles (Lepidochelys kempi Garman) and compared the values with those predicted from Heisler's equations. Blood samples were collected into heparinized syringes from the dorsal cervical sinus of 1- to 2-year- old animals at the National Marine Fisheries Service, Galveston Laboratory, Texas. Separated plasma was obtained by centrifugation of the whole blood samples. (alpha)CO2 was determined gasometrically by equilibrating 2 ml samples of acidified plasma (titrated to pH 2.5 with 1 mol l-1 HCl) in a tonometer with 99.9 % CO2 at 20, 25, 30 or 35 °C. Fresh samples of plasma were used at each temperature. The total CO2 content (CCO2) of plasma was measured in duplicate after 15 min of equilibration, using the methods described by Cameron (1971). The CO2 electrode (Radiometer, type E5036) was calibrated at each temperature using known [HCO3-]. Plasma PCO2 was calculated from the known fractional CO2 content of the equilibration gas, corrected for temperature, barometric pressure and water vapor pressure. Plasma water content was measured by weighing samples of plasma before and after they had been dried at 60 °C to constant weight. (alpha)CO2 was calculated as The quotient of CCO2 and PCO2, taking into account the plasma water content (mean +/− s.e.= 96+/−0.03 %). pKa was determined gasometrically by equilibrating 2 ml samples of plasma in a tonometer with 4.78 or 10.2 % CO2 (balance N2) at 20 or 30 °C. Fresh samples of plasma were used at each temperature and gas concentration. Plasma CCO2 and pH were measured in duplicate. The pH electrode (Radiometer, type G297/G2) was calibrated at each temperature using precision Radiometer pH buffers (S1500 and S1510). Plasma PCO2 was determined as above. pKa was calculated from a rearrangement of the Henderson-Hasselbalch equation (equation 2), assuming CCO2 to be the sum of [HCO3-] and [CO2] (i.e. (alpha)CO2PCO2). Heisler's equations were adapted for use with L. kempi plasma using measured values of the molarity of dissolved species (Md), [Na+] and protein concentration ([Pr]). These parameters were quantified as follows: Md with a vapor pressure osmometer (Precision Systems, model 5004), [Na+] by flame photometry (Jenway, model PFP7) and [Pr] by a standard spectrophotometric method (Sigma kit 541). The average values were Md=0.304+/−0.003 mol l-1, [Na+]=0.141+/−0.004 mol l-1 and [Pr]=28+/−3 g l- 1. The ionic strength of nonprotein ions (I) was assigned a value of 0.150 mol l-1. Computed (alpha)CO2 and pKa values were generated for a wider range of temperature and pH conditions than were used experimentally in order to emphasize the pattern and range of effects of temperature and/or pH.


2020 ◽  
Vol 857 ◽  
pp. 383-393
Author(s):  
Mahdi O. Karkush ◽  
Amer G. Jihad

This study focuses on investigating the impacts of kerosene on the physical, mechanical, and chemical characteristics of clay soil. The soils specimens are contaminated artificially with six ratios of kerosene (5, 10, 20, 30, 40, and 50) % calculated according to the dry weight of soil. The artificial contamination includes air drying of the disturbed soil, then placed in plastic containers and mixed with the field water content and the specified concentration of kerosene to ensure getting homogenous contaminated soil specimens. The contaminated soil specimens left for 30 days in plastic containers covered by nylon sheets to control the water content and prevent volatility of contaminant. The results of tests proved that different ratios of kerosene have different impacts on the engineering and chemical characteristics of soil specimens. The specific gravity, percentages of fine particles, optimum water content, the initial and final void ratio, coefficient of consolidation, swelling index, permeability, the undrained shear strength, effective shear strength parameters, and the rate of reduction of initial pore water pressure are reduced significantly with increasing the content of kerosene in soil. Generally, the concentration of kerosene less than 10% has slight impacts on the studied characteristics of soil specimens.


Sign in / Sign up

Export Citation Format

Share Document