scholarly journals Chitosan Applications Used in Medical Therapy of Tissue Regeneration

2016 ◽  
Vol 2 (2) ◽  
pp. 271
Author(s):  
Alef Mustafa ◽  
Ana Maria Ionescu ◽  
Melat Cherim ◽  
Rodica Sîrbu

Chitosan is an unique natural biopolymer that has great potential in tissue engineering applications and over the past several decades, it has emerged as a promising biomaterial for biomedical applications. Due to its various properties such as controllable biodegradability, biocompatibility, antimicrobial activity and functionalizability, chitosan can be used to form chitosan-based scaffolds and in different scaffold fabrication techniques. Over the years a great number of studies have been performed to evaluate the cytocompatibility of chitosan using a variety off cell types such as osteoblasts, chondrocytes, fibroblasts, nucleus pulposus cells, neutral and endothelial cells. It was shown that chitosan is biocompatible with these cell types and has the potential to be used for bone, cartilage, skin, intervertebral disc, ligament and tendon, and nerve and vascular tissue engineering. The flexibility of the processing conditions of chitosan aids in the fabrication of versatile substrates as scaffolds for tissue regeneration or carriers for biological molecules. It is critical to synthesize medical grade chitosan materials with controllable structure and properties that will allow the development of chitosan-based medical devices and it is beneficial to chemically design chitosan derivatives with molecular and biological specificity through bulk material modification. Despite all the challenges, chitosan holds great promise as a biomaterial for developing medical products and medical therapies.

2016 ◽  
Vol 4 (2) ◽  
pp. 271 ◽  
Author(s):  
Alef Mustafa ◽  
Ana Maria Ionescu ◽  
Melat Cherim ◽  
Rodica Sîrbu

Chitosan is an unique natural biopolymer that has great potential in tissue engineering applications and over the past several decades, it has emerged as a promising biomaterial for biomedical applications. Due to its various properties such as controllable biodegradability, biocompatibility, antimicrobial activity and functionalizability, chitosan can be used to form chitosan-based scaffolds and in different scaffold fabrication techniques. Over the years a great number of studies have been performed to evaluate the cytocompatibility of chitosan using a variety off cell types such as osteoblasts, chondrocytes, fibroblasts, nucleus pulposus cells, neutral and endothelial cells. It was shown that chitosan is biocompatible with these cell types and has the potential to be used for bone, cartilage, skin, intervertebral disc, ligament and tendon, and nerve and vascular tissue engineering. The flexibility of the processing conditions of chitosan aids in the fabrication of versatile substrates as scaffolds for tissue regeneration or carriers for biological molecules. It is critical to synthesize medical grade chitosan materials with controllable structure and properties that will allow the development of chitosan-based medical devices and it is beneficial to chemically design chitosan derivatives with molecular and biological specificity through bulk material modification. Despite all the challenges, chitosan holds great promise as a biomaterial for developing medical products and medical therapies.


2016 ◽  
Vol 17 (1-2) ◽  
Author(s):  
Anastasia Koroleva ◽  
Andrea Deiwick ◽  
Alexander Nguyen ◽  
Roger Narayan ◽  
Anastasia Shpichka ◽  
...  

AbstractIn this work, we have explored 3-D co-culture of vasculogenic cells within a synthetically modified fibrin hydrogel. Fibrinogen was covalently linked with PEG-NHS in order to improve its degradability resistance and physico-optical properties. We have studied influences of the degree of protein PEGylation and the concentration of enzyme thrombin used for the gel preparation on cellular responses. Scanning electron microscopy analysis of prepared gels revealed that the degree of PEGylation and the concentration of thrombin strongly influenced microstructural characteristics of the protein hydrogel. Human umbilical vein endothelial cells (HUVECs) and human adipose-derived stem cells (hASCs), used as vasculogenic co-culture, could grow in 5:1 PEGylated fibrin gels prepared using 1:0.2 protein to thrombin ratio. This gel formulation supported hASCs and HUVECs spreading and the formation of cell extensions and cell-to-cell contacts. Expression of specific ECM proteins and vasculogenic process inherent cellular enzymatic activity were investigated by immunofluorescent staining, gelatin zymography, western blot and RT-PCR analysis. After evaluation of the optimal gel composition and PEGylation ratio, the hydrogel was utilized for investigation of vascular tube formation within a perfusable microfluidic system. The morphological development of this co-culture within a perfused hydrogel over 12 days led to the formation of interconnected HUVEC-hASC network. The demonstrated PEGylated fibrin microfluidic approach can be used for incorporating other cell types, thus representing a unique experimental platform for basic vascular tissue engineering and drug screening applications.


2020 ◽  
Vol 21 (18) ◽  
pp. 6544 ◽  
Author(s):  
Neha Kaushik ◽  
Linh Nhat Nguyen ◽  
June Hyun Kim ◽  
Eun Ha Choi ◽  
Nagendra Kumar Kaushik

In the field of tissue engineering, there are several issues to consider when designing biomaterials for implants, including cellular interaction, good biocompatibility, and biochemical activity. Biomimetic mineralization has gained considerable attention as an emerging approach for the synthesis of biocompatible materials with complex shapes, categorized organization, controlled shape, and size in aqueous environments. Understanding biomineralization strategies could enhance opportunities for novel biomimetic mineralization approaches. In this regard, mussel-inspired biomaterials have recently attracted many researchers due to appealing features, such as strong adhesive properties on moist surfaces, improved cell adhesion, and immobilization of bioactive molecules via catechol chemistry. This molecular designed approach has been a key point in combining new functionalities into accessible biomaterials for biomedical applications. Polydopamine (PDA) has emerged as a promising material for biomaterial functionalization, considering its simple molecular structure, independence of target materials, cell interactions for adhesion, and robust reactivity for resulting functionalization. In this review, we highlight the strategies for using PDA to induce the biomineralization of hydroxyapatite (HA) on the surface of various implant materials with good mechanical strength and corrosion resistance. We also discuss the interactions between the PDA-HA coating, and several cell types that are intricate in many biomedical applications, involving bone defect repair, bone regeneration, cell attachment, and antibacterial activity.


2013 ◽  
Vol 2013 ◽  
pp. 1-11 ◽  
Author(s):  
Haifeng Liu ◽  
Xili Ding ◽  
Gang Zhou ◽  
Ping Li ◽  
Xing Wei ◽  
...  

Electrospinning is a method in which materials in solution are formed into nano- and micro-sized continuous fibers. Recent interest in this technique stems from both the topical nature of nanoscale material fabrication and the considerable potential for use of these nanoscale fibres in a range of applications including, amongst others, a range of biomedical applications processes such as drug delivery and the use of scaffolds to provide a framework for tissue regeneration in both soft and hard tissue applications systems. The objectives of this review are to describe the theory behind the technique, examine the effect of changing the process parameters on fiber morphology, and discuss the application and impact of electrospinning on the fields of vascular, neural, bone, cartilage, and tendon/ligament tissue engineering.


2007 ◽  
Vol 2 (5) ◽  
pp. 831-837 ◽  
Author(s):  
Rei Ogawa ◽  
Koichiro Oki ◽  
Hike Hyakusoku

2021 ◽  
Vol 9 ◽  
Author(s):  
Antonio Junior Lepedda ◽  
Gabriele Nieddu ◽  
Marilena Formato ◽  
Matthew Brandon Baker ◽  
Julia Fernández-Pérez ◽  
...  

Cardiovascular diseases represent the number one cause of death globally, with atherosclerosis a major contributor. Despite the clinical need for functional arterial substitutes, success has been limited to arterial replacements of large-caliber vessels (diameter > 6 mm), leaving the bulk of demand unmet. In this respect, one of the most challenging goals in tissue engineering is to design a “bioactive” resorbable scaffold, analogous to the natural extracellular matrix (ECM), able to guide the process of vascular tissue regeneration. Besides adequate mechanical properties to sustain the hemodynamic flow forces, scaffold’s properties should include biocompatibility, controlled biodegradability with non-toxic products, low inflammatory/thrombotic potential, porosity, and a specific combination of molecular signals allowing vascular cells to attach, proliferate and synthesize their own ECM. Different fabrication methods, such as phase separation, self-assembly and electrospinning are currently used to obtain nanofibrous scaffolds with a well-organized architecture and mechanical properties suitable for vascular tissue regeneration. However, several studies have shown that naked scaffolds, although fabricated with biocompatible polymers, represent a poor substrate to be populated by vascular cells. In this respect, surface functionalization with bioactive natural molecules, such as collagen, elastin, fibrinogen, silk fibroin, alginate, chitosan, dextran, glycosaminoglycans (GAGs), and growth factors has proven to be effective. GAGs are complex anionic unbranched heteropolysaccharides that represent major structural and functional ECM components of connective tissues. GAGs are very heterogeneous in terms of type of repeating disaccharide unit, relative molecular mass, charge density, degree and pattern of sulfation, degree of epimerization and physicochemical properties. These molecules participate in a number of vascular events such as the regulation of vascular permeability, lipid metabolism, hemostasis, and thrombosis, but also interact with vascular cells, growth factors, and cytokines to modulate cell adhesion, migration, and proliferation. The primary goal of this review is to perform a critical analysis of the last twenty-years of literature in which GAGs have been used as molecular cues, able to guide the processes leading to correct endothelialization and neo-artery formation, as well as to provide readers with an overall picture of their potential as functional molecules for small-diameter vascular regeneration.


Marine Drugs ◽  
2019 ◽  
Vol 17 (8) ◽  
pp. 467 ◽  
Author(s):  
Ye-Seon Lim ◽  
Ye-Jin Ok ◽  
Seon-Yeong Hwang ◽  
Jong-Young Kwak ◽  
Sik Yoon

This review focuses on the expanding role of marine collagen (MC)-based scaffolds for biomedical applications. A scaffold—a three-dimensional (3D) structure fabricated from biomaterials—is a key supporting element for cell attachment, growth, and maintenance in 3D cell culture and tissue engineering. The mechanical and biological properties of the scaffolds influence cell morphology, behavior, and function. MC, collagen derived from marine organisms, offers advantages over mammalian collagen due to its biocompatibility, biodegradability, easy extractability, water solubility, safety, low immunogenicity, and low production costs. In recent years, the use of MC as an increasingly valuable scaffold biomaterial has drawn considerable attention from biomedical researchers. The characteristics, isolation, physical, and biochemical properties of MC are discussed as an understanding of MC in optimizing the subsequent modification and the chemistries behind important tissue engineering applications. The latest technologies behind scaffold processing are assessed and the biomedical applications of MC and MC-based scaffolds, including tissue engineering and regeneration, wound dressing, drug delivery, and therapeutic approach for diseases, especially those associated with metabolic disturbances such as obesity and diabetes, are discussed. Despite all the challenges, MC holds great promise as a biomaterial for developing medical products and therapeutics.


2021 ◽  
Vol 8 (6) ◽  
pp. 13-21
Author(s):  
Odia Osemwegie ◽  
Lihua Lou ◽  
Ernest Smith ◽  
Seshadri Ramkumar

Nanofiber substrates have been used for various biomedical applications, including tissue regeneration, drug delivery, and in-vitro cell culture. However, despite the high volume of studies in this field, current clinical applications remain minimal. Innovations for their applications continuously generate exciting prospects. In this review, we discuss some of these novel innovations and identify critical factors to consider before their adoption for biomedical applications.


2021 ◽  
Vol 8 ◽  
Author(s):  
M. Z. I. Mollah ◽  
H. M. Zahid ◽  
Z. Mahal ◽  
Mohammad Rashed Iqbal Faruque ◽  
M. U. Khandaker

Due to their unique properties, alginate-based biomaterials have been extensively used to treat different diseases, and in the regeneration of diverse organs. A lot of research has been done by the different scientific community to develop biofilms for fulfilling the need for sustainable human health. The aim of this review is to hit upon a hydrogel enhancing the scope of utilization in biomedical applications. The presence of active sites in alginate hydrogels can be manipulated for managing various non-communicable diseases by encapsulating, with the bioactive component as a potential site for chemicals in developing drugs, or for delivering macromolecule nutrients. Gels are accepted for cell implantation in tissue regeneration, as they can transfer cells to the intended site. Thus, this review will accelerate advanced research avenues in tissue engineering and the potential of alginate biofilms in the healthcare sector.


Author(s):  
Kathryn Wingate ◽  
Yan Tan ◽  
Wei Tan

Mesenchymal Stem Cells (MSCs) show great promise for the treatment of cardiovascular diseases by tissue engineering and cell therapy. MSCs are particularly useful for vascular therapies as they are easily obtainable, allogenic, trans-differentiate into specific vascular cells, and assist in regenerating vascular tissue through paracrine signaling. [1] However, the mechanisms which direct MSC trans-differentiation and paracrine signaling are not well defined. [2] Incorrect differentiation of MSC can lead to catastrophic side effects such as the development of a dysfunctional endothelium. [3] To safely utilize these cells for the treatment of vascular diseases it is critical to understand the underlying mechanisms that direct MSC differentiation and paracrine signaling.


Sign in / Sign up

Export Citation Format

Share Document