scholarly journals Insilico analysis of acridone against TNF-α and PDE4 targets for the treatment of psoriasis

2020 ◽  
Vol 11 (SPL4) ◽  
pp. 1251-1259
Author(s):  
Sunitha Sukumaran ◽  
Meghna M ◽  
Sneha S ◽  
Arjun B ◽  
Sathianarayanan S ◽  
...  

Psoriasis is an autoimmune disorder. Phosphodiesterase is a family of 1-11 among which PDE4 is most predominant enzymes present in inflammatory cells. Commercially available drugs are synthetic, and these may cause various side effects and are expensive. Dimethyl fumarate is the most frequently used systematic treatment for psoriasis with significant side effects such as myelosuppression, hepatic fibrosis and pulmonary fibrosis. Immune compromise drugs having various side effects, so this project is aimed to propose a novel drug that has more potency, efficiency and least side effects. The docking analysis was carried out to identify the best ligands by predicting the ligand conformation in the active protein sites and ligand binding affinity towards protein. Ligands were docked with the proteins, and all exhibited higher docking score than the standard drug dimethyl fumarate. The TNF- α inhibitors with PDB id such as 2ZJC, 2ZPX and PDE4 Inhibitors with PDB ID such as 3SL3, 1PTW are selected as target proteins, acridone had the best docking score of 19.3502 than standard value 12.997, and with PDB ID 3SL3, acridone showed 26.025 as docking score over the standard value 21.995. it interacted well with the active sites of the proteins. Thus, we infer that these studies will be a leader, in designing new and improved drug target for psoriatic therapy. 

2019 ◽  
Vol 12 (12) ◽  
pp. e232217
Author(s):  
Preeti Dalal ◽  
Manisha Gulia ◽  
Monica Gupta ◽  
Anita Tahlan

Immune thrombocytopenia is an autoimmune disorder characterised by autoantibody production against platelets, increased platelet destruction and impaired thrombopoiesis. Steroids are the first-line agents whenever treatment is indicated; however, some patients may not respond and the responders may as well relapse while the dose is being tapered. Side effects of steroids prohibits their long-term use and patients often have to be switched to other agents. Standard drug management with intravenous immunoglobulins and thrombopoietin receptor analogues is difficult to administer in patients from low socioeconomic regions of the world making the management even more challenging. Hence, after reviewing the literature and considering the cost in comparison to all the second-line agents available, we tried dapsone in a steroid-dependent patient of immune thrombocytopenic purpura who had developed major steroid-related side effects. Patient showed good response to dapsone and has been in remission for around one and a half years.


2020 ◽  
Vol 17 ◽  
Author(s):  
Deepak Kumar Singh ◽  
Mayank Kulshreshtha ◽  
Yogesh Kumar ◽  
Pooja A Chawla ◽  
Akash Ved ◽  
...  

Background: The pyrazolines give the reactions of aliphatic derivatives, resembling unsaturated compounds in their behavior towards permanganate and nascent hydrogen. This nucleus has been associated with various biological activities including inflammatory. Thiazolinone is a heterocyclic compound that contains both sulfur and nitrogen atom with a carbonyl group in their structure.Thiazolinone and their derivatives have attracted continuing interest because of their various biological activities, such as anti-inflammatory, antimicrobial, anti-proliferative, antiviral, anticonvulsant etc. The aim of the research was to club pyrazoline nucleus with thiazolinone in order to have significantanti-inflammatory activity. The synthesized compounds were chemically characterized for the establishment of their chemical structures and to evaluate as anti-inflammatory agent. Method: In the present work, eight derivatives of substituted pyrazoline (PT1-PT8) were synthesized by a three step reaction.The compounds were subjected to spectral analysis by Infrared, Mass and Nuclear magnetic resonance spectroscopy and elemental analysis data. All the synthesized were evaluated for their in vivo anti-inflammatory activity. The synthesized derivatives were evaluated for their affinity towards target COX-1 and COX-2, using indomethacin as the reference compound molecular docking visualization through AutoDock Vina. Results: Compounds PT-1, PT-3, PT-4 and PT-8 exhibited significant anti-inflammatory activity at 3rd hour being 50.7%, 54.3%, 52.3% and 57% respectively closer to that of the standard drug indomethacin (61.9%).From selected anti-inflammatory targets, the synthesized derivatives exhibited better interaction with COX-1 and COX-2 receptor, where indomethacin showed docking score of -6.5 kJ/mol, compound PT-1 exhibited highest docking score of -9.1 kJ/mol for COX-1 and compound PT-8 having docking score of 9.4 kJ/mol for COX-2. Conclusion: It was concluded that synthesized derivatives have more interaction with COX-2 receptors in comparison to the COX-1 receptors because the docking score with COX-2 receptors were very good. It is concluded that the synthesized derivatives (PT-1 to PT-8) are potent COX-2 inhibitors.


2019 ◽  
Vol 19 (7) ◽  
pp. 916-934 ◽  
Author(s):  
Appavoo Umamaheswari ◽  
Ayarivan Puratchikody ◽  
Natarajan Hari

Background:The available treatment option for any type of cancer including CTCL is chemotherapy and radiation therapy which indiscriminately persuade on the normal cells. One way out for selective destruction of CTCL cells without damaging normal cells is the use of histone deacetylase inhibitors (HDACi). Despite promising results in the treatment of CTCL, these HDACi have shown a broadband inhibition profile, moderately selective for one HDAC class but not for a particular isotype. The prevalence of drug-induced side effects leaves open a narrow window of speculation that the decreased therapeutic efficacy and observed side effects may be most likely due to non specific HDAC isoform inhibition. The aim of this paper is to synthesis and evaluates HDAC8 isoform specific inhibitors.Methods:Based on the preliminary report on the design and in silico studies of 52 hydroxamic acid derivatives bearing multi-substituent heteroaromatic rings with chiral amine linker, five compounds were shortlisted and synthesized by microwave assisted approach and high yielding synthetic protocol. A series of in vitro assays in addition to HDAC8 inhibitory activity was used to evaluate the synthesised compounds.Results:Inhibitors 1e, 2e, 3e, 4e and 5e exerted the anti-proliferative activities against CTCL cell lines at 20- 100 µM concentrations. Both the pyrimidine- and pyridine-based probes exhibited μM inhibitory activity against HDAC8. The pyrimidine-based probe 1e displayed remarkable HDAC8 selectivity superior to that of the standard drug, SAHA with an IC50 at 0.1µM.Conclusion:Our study demonstrated that simple modifications at different portions of pharmacophore in the hydroxamic acid analogues are effective for improving both HDAC8 inhibitory activity and isoform selectivity. Potent and highly isoform-selective HDAC8 inhibitors were identified. These findings would be expedient for further development of HDAC8-selective inhibitors.


F1000Research ◽  
2017 ◽  
Vol 6 ◽  
pp. 2138 ◽  
Author(s):  
Takumi Satoh ◽  
Stuart Lipton

Dimethyl fumarate (DMF) is an electrophilic compound previously called BG-12 and marketed under the name Tecfidera®. It was approved in 2013 by the US Food and Drug Administration and the European Medicines Agency for the treatment of relapsing multiple sclerosis. One mechanism of action of DMF is stimulation of the nuclear factor erythroid 2-related factor 2 (NRF2) transcriptional pathway that induces anti-oxidant and anti-inflammatory phase II enzymes to prevent chronic neurodegeneration. However, electrophiles such as DMF also produce severe systemic side effects, in part due to non-specific S-alkylation of cysteine thiols and resulting depletion of glutathione. This mini-review presents the present status and future strategy for NRF2 activators designed to avoid these side effects. Two modes of chemical reaction leading to NRF2 activation are considered here. The first mode is S-alkylation (covalent reaction) of thiols in Kelch-like ECH-associated protein 1 (KEAP1), which interacts with NRF2. The second mechanism involves non-covalent pharmacological inhibition of protein-protein interactions, in particular domain-specific interaction between NRF2 and KEAP1 or other repressor proteins involved in this transcriptional pathway. There have been significant advances in drug development using both of these mechanisms that can potentially avoid the systemic side effects of electrophilic compounds. In the first case concerning covalent reaction with KEAP1, monomethyl fumarate and monoethyl fumarate appear to represent safer derivatives of DMF. In a second approach, pro-electrophilic drugs, such as carnosic acid from the herb Rosmarinus officinalis, can be used as a safe pro-drug of an electrophilic compound. Concerning non-covalent activation of NRF2, drugs are being developed that interfere with the direct interaction of KEAP1-NRF2 or inhibit BTB domain and CNC homolog 1 (BACH1), which is a transcriptional repressor of the promoter where NRF2 binds.


Author(s):  
Tongtong Zhao ◽  
Kai Zhang ◽  
Yelei Zhang ◽  
Yating Yang ◽  
Xiaoshuai Ning ◽  
...  

Abstract Rationale and objective Clozapine (CLZ) is the most effective drug for treatment-resistant schizophrenia but is associated with many side effects, including glycometabolism disorders. Immunological mechanisms may be involved in the development of clozapine side effects. Research relating the immunomodulatory effects of clozapine and its early markers to clinically relevant adverse events is needed to reduce the harmful side effects of clozapine. This study aimed to investigate the role of proinflammatory cytokines in clozapine-associated glycometabolism disorders. Methods We measured the effect of a range of doses of clozapine on glycometabolism-related parameters and proinflammatory cytokines levels in mice peripheral blood. We also examined the differences between these indicators in the peripheral blood of clozapine-treated schizophrenia patients and healthy controls. Furthermore, we detected proinflammatory cytokines expression in mice pancreatic tissue. Results Following clozapine administration, glucagon significantly decreased in mouse serum, and proinflammatory cytokine IL-β levels markedly increased. Clozapine reliably increased proinflammatory cytokines (IL-1β, IL-6, and TNF-α) expression in murine pancreatic tissue. Compared with healthy controls, clozapine-treated patients’ BMI, blood glucose, and proinflammatory cytokines (IL-1β, IL-6, and TNF-α) increased significantly. In clozapine-treated patients, a higher clozapine daily dosage was associated with higher levels of the proinflammatory cytokines IL-1β and IL-6, and a significant positive correlation was observed between blood glucose levels and the proinflammatory cytokines IL-6 and TNF-α. Conclusion Findings from animal experiments and clinical trials have shown clear evidence that clozapine has a regulatory effect on immune-related proinflammatory cytokines and influences glycometabolism indicators.


2021 ◽  
Author(s):  
Avinash Kumar ◽  
Revathi Rajappan ◽  
Suvarna G. Kini ◽  
Ekta Rathi ◽  
Sriram Dharmarajan ◽  
...  

AbstractTuberculosis continues to wreak havoc worldwide and caused around 1.4 million deaths in 2019. Hence, in our pursuit of developing novel antitubercular compounds, we are reporting the e-Pharmacophore-based design of DprE1 (decaprenylphosphoryl-ribose 2′-oxidase) inhibitors. In the present work, we have developed a four-feature e-Pharmacophore model based on the receptor–ligand cavity of DprE1 protein (PDB ID 4P8C) and mapped our previous reported library of compounds against it. The compounds were ranked on phase screen score, and the insights obtained from their alignment were used to design some novel compounds. The designed compounds were docked with DprE1 protein in extra-precision mode using Glide module of Maestro, Schrodinger. Some derivatives like B1, B2, B4, B5 and B12 showed comparable docking score (docking score > − 6.0) with respect to the co-crystallized ligand. The designed compounds were synthesized and characterized. In vitro antitubercular activity was carried out on Mycobacterium tuberculosis H37Rv (ATCC27294) strain using the agar dilution method, and minimum inhibitory concentration (MIC) was determined. The compound B12 showed a MIC value of 1.56 μg/ml which was better than the standard drug ethambutol (3.125 μg/ml). Compounds B7 and B11 were found to be equipotent with ethambutol. Cytotoxicity studies against Vero cell lines proved that these compounds were non-cytotoxic. Molecular dynamic simulation study also suggests that compound B12 will form a stable complex with DprE1 protein and will show the crucial H-bond interaction with LYS418 residue. Further in vitro enzyme inhibition studies are required to validate these findings.


2020 ◽  
Vol 81 (1) ◽  
Author(s):  
Abeer Mahmoud Badr ◽  
Mohamed Farid ◽  
Ahmed Abdel Aziz Biomy ◽  
Ayman Saber Mohamed ◽  
Noha Ahmed Mahana ◽  
...  

Abstract Background Cholestasis is the major cause of bile acid accumulation leading to liver damage. Chronic infection of worms can modulate the immune response towards T helper (Th)2-related cytokines. The present study aims to evaluate the protective impact of an ascarid nematode Toxocara vitulorum extract (TvE) against alpha-naphthylisothiocyanate (ANIT)-induced cholangitis male wistar rat model compared to ursodeoxycholic acid (UDCA) as a standard drug. Results Pretreatment with TvE and/or UDCA induced a marked reduction in the levels of liver function tests and malondialdehyde, while antioxidant markers were increased compared to cholestatic rats. Pretreatment with either TvE or combination before cholangitis induction attenuated the predominant Th1-related cytokines (IFN-γ and TNF-α) to Th2 (IL-13 and IL-10). TvE administration promoted higher expression levels of Bcl-2 protein and lower levels of caspase-3 compared to cholestatic rats. Conclusions Treatment with TvE has improved the liver functions and elevated the levels of oxidative stress markers. The upregulation of Th2-related cytokines and suppression of apoptosis through caspase-3 might be considered as a potential mechanism of TvE. Thereby, this natural extract revealed an opportunity for use in treatment of cholangitis disease.


Pharmaceutics ◽  
2019 ◽  
Vol 11 (3) ◽  
pp. 143 ◽  
Author(s):  
Jingnan Zhao

Gold nanocages (AuNCs) are biocompatible and porous nanogold particles that have been widely used in biomedical fields. In this study, hyaluronic acid (HA) and peptide- modified gold nanocages (HA-AuNCs/T/P) loaded with 2-[(aminocarbonyl)amino]-5-(4-fluorophenyl)-3-thiophenecarboxamide (TPCA-1) were prepared to investigate their potential for combating inflammation. TPCA-1 was released from AuNCs, intracellularly when HA was hydrolyzed by hyaluronidase. HA-AuNCs/T/P show a much higher intracellular uptake than AuNCs/T/P, and exhibit a much higher efficacy on the suppression of tumor necrosis factor alpha (TNF-α) and interleukin 6 (IL-6) than free TPCA-1, suggesting great improvement to the anti-inflammatory efficacy of TPCA-1 through the application of AuNCs. HA-AuNCs/T/P can also reduce the production of reactive oxygen species in inflammatory cells. This study suggests that HA-AuNCs/T/P may be potential agents for anti-inflammatory treatment, and are worthy of further investigation.


2011 ◽  
Vol 60 (1-2) ◽  
pp. 77-88 ◽  
Author(s):  
Julia Reis ◽  
Xiu Qin Guan ◽  
Alexei F. Kisselev ◽  
Christopher J. Papasian ◽  
Asaf A. Qureshi ◽  
...  

2002 ◽  
Vol 282 (4) ◽  
pp. L735-L742 ◽  
Author(s):  
James L. Carroll ◽  
Diann M. McCoy ◽  
Stephen E. McGowan ◽  
Ronald G. Salome ◽  
Alan J. Ryan ◽  
...  

Tumor necrosis factor (TNF)-α is a major cytokine implicated in inducing acute and chronic lung injury, conditions associated with surfactant phosphatidylcholine (PtdCho) deficiency. Acutely, TNF-α decreases PtdCho synthesis but stimulates surfactant secretion. To investigate chronic effects of TNF-α, we investigated PtdCho metabolism in a murine transgenic model exhibiting lung-specific TNF-α overexpression. Compared with controls, TNF-α transgenic mice exhibited a discordant pattern of PtdCho metabolism, with a decrease in PtdCho and disaturated PtdCho (DSPtdCho) content in the lung, but increased levels in alveolar lavage. Transgenics had lower activities and increased immunoreactive levels of cytidylyltransferase (CCT), a key PtdCho biosynthetic enzyme. Ceramide, a CCT inhibitor, was elevated, and linoleic acid, a CCT activator, was decreased in transgenics. Radiolabeling studies revealed that alveolar reuptake of DSPtdCho was significantly decreased in transgenic mice. These observations suggest that chronic expression of TNF-α results in a complex pattern of PtdCho metabolism where elevated lavage PtdCho may originate from alveolar inflammatory cells, decreased surfactant reuptake, or altered surfactant secretion. Reduced parenchymal PtdCho synthesis appears to be attributed to CCT enzyme that is physiologically inactivated by ceramide or by diminished availability of activating lipids.


Sign in / Sign up

Export Citation Format

Share Document