scholarly journals Research of the cooperation technology between the air traffic control service and the aerodrome service

2021 ◽  
Vol 24 (4) ◽  
pp. 8-19
Author(s):  
K. A. Batalov ◽  
M. V. Kulakov ◽  
I. A. Chekhov

The article considers the process of cooperation between the ATC and airport operation services. The analysis considers the procedures of cooperation while inspecting a runway before performing flights, aircraft departure and arrival that encompass the entire range of coordinated operations. For each procedure, the costs of aircraft delays are calculated. The assessment was carried out by synthesizing the chronology of services cooperation in real conditions. On the basis of the collected data flowcharts of services cooperation to ensure flights of an airport and the ATM services were built. To provide a visual comparison of the existing and proposed model sof services cooperation the networks of services cooperation were built based on the mathematical model of the graphic chart. The operation network establishes the sequence of events to provide departure of one aircraft operating a scheduled flight of an airline. Within the given study the ATC service and the aerodrome service are involved to ensure a departure. Cooperation between the operation and dispatch service of the airport and an aircraft crew is conditional because in this case they do not impact the technology of cooperation. The network is a particular set of dots(summits)interconnected by lines (links). In the case of our study, circles are events (performed work). Directional segments (lines) are work connecting events to each other. While assessing the process of cooperation during arrival and departure, two cases were considered: the runway is occupied or clear.The runway could be occupied for different reasons: available vehicles, people, animals or flocks of birds on the runway. The study of the cooperation technology was carried out for 12 monthsof making scheduled flights at Zhukovsky and Ostafievo airports on the basis of every day flight plans.

Author(s):  
Olga Mikhaylovna Tikhonova ◽  
Alexander Fedorovich Rezchikov ◽  
Vladimir Andreevich Ivashchenko ◽  
Vadim Alekseevich Kushnikov

The paper presents the system of predicting the indicators of accreditation of technical universities based on J. Forrester mechanism of system dynamics. According to analysis of cause-and-effect relationships between selected variables of the system (indicators of accreditation of the university) there was built the oriented graph. The complex of mathematical models developed to control the quality of training engineers in Russian higher educational institutions is based on this graph. The article presents an algorithm for constructing a model using one of the simulated variables as an example. The model is a system of non-linear differential equations, the modelling characteristics of the educational process being determined according to the solution of this system. The proposed algorithm for calculating these indicators is based on the system dynamics model and the regression model. The mathematical model is constructed on the basis of the model of system dynamics, which is further tested for compliance with real data using the regression model. The regression model is built on the available statistical data accumulated during the period of the university's work. The proposed approach is aimed at solving complex problems of managing the educational process in universities. The structure of the proposed model repeats the structure of cause-effect relationships in the system, and also provides the person responsible for managing quality control with the ability to quickly and adequately assess the performance of the system.


2021 ◽  
Vol 9 (2) ◽  
pp. 118
Author(s):  
Xinqing Zhuang ◽  
Keliang Yan ◽  
Pan Gao ◽  
Yihua Liu

Anchor dragging is a major threat to the structural integrity of submarine pipelines. A mathematical model in which the mechanical model of chain and the bearing model of anchor were coupled together. Based on the associated flow rule, an incremental procedure was proposed to solve the spatial state of anchor until it reaches the ultimate embedding depth. With an indirect measurement method for the anchor trajectory, a model test system was established. The mathematical model was validated against some model tests, and the effects of two parameters were studied. It was found that both the ultimate embedding depth of a dragging anchor and the distance it takes to reach the ultimate depth increase with the shank-fluke pivot angle, but decrease as the undrained shear strength of clay increases. The proposed model is supposed to be useful for the embedding depth calculation and guiding the design of the pipeline burial depth.


Electronics ◽  
2021 ◽  
Vol 10 (15) ◽  
pp. 1843
Author(s):  
Jelena Vlaović ◽  
Snježana Rimac-Drlje ◽  
Drago Žagar

A standard called MPEG Dynamic Adaptive Streaming over HTTP (MPEG DASH) ensures the interoperability between different streaming services and the highest possible video quality in changing network conditions. The solutions described in the available literature that focus on video segmentation are mostly proprietary, use a high amount of computational power, lack the methodology, model notation, information needed for reproduction, or do not consider the spatial and temporal activity of video sequences. This paper presents a new model for selecting optimal parameters and number of representations for video encoding and segmentation, based on a measure of the spatial and temporal activity of the video content. The model was developed for the H.264 encoder, using Structural Similarity Index Measure (SSIM) objective metrics as well as Spatial Information (SI) and Temporal Information (TI) as measures of video spatial and temporal activity. The methodology that we used to develop the mathematical model is also presented in detail so that it can be applied to adapt the mathematical model to another type of an encoder or a set of encoding parameters. The efficiency of the segmentation made by the proposed model was tested using the Basic Adaptation algorithm (BAA) and Segment Aware Rate Adaptation (SARA) algorithm as well as two different network scenarios. In comparison to the segmentation available in the relevant literature, the segmentation based on the proposed model obtains better SSIM values in 92% of cases and subjective testing showed that it achieves better results in 83.3% of cases.


2016 ◽  
Vol 10 (10) ◽  
pp. 133
Author(s):  
Mohammad Ali Nasiri Khalili ◽  
Mostafa Kafaei Razavi ◽  
Morteza Kafaee Razavi

Items supplies planning of a logistic system is one of the major issue in operations research. In this article the aim is to determine how much of each item per month from each supplier logistics system requirements must be provided. To do this, a novel multi objective mixed integer programming mathematical model is offered for the first time. Since in logistics system, delivery on time is very important, the first objective is minimization of time in delivery on time costs (including lack and maintenance costs) and the cost of purchasing logistics system. The second objective function is minimization of the transportation supplier costs. Solving the mathematical model shows how to use the Multiple Objective Decision Making (MODM) can provide the ensuring policy and transportation logistics needed items. This model is solved with CPLEX and computational results show the effectiveness of the proposed model.


2021 ◽  
Vol 316 ◽  
pp. 661-666
Author(s):  
Nataliya V. Mokrova

Current cobalt processing practices are described. This article discusses the advantages of the group argument accounting method for mathematical modeling of the leaching process of cobalt solutions. Identification of the mathematical model of the cascade of reactors of cobalt-producing is presented. Group method of data handling is allowing: to eliminate the need to calculate quantities of chemical kinetics; to get the opportunity to take into account the results of mixed experiments; to exclude the influence of random interference on the simulation results. The proposed model confirms the capabilities of the group method of data handling for describing multistage processes.


2021 ◽  
Vol 2021 ◽  
pp. 1-17
Author(s):  
Filip Lorenz ◽  
Vit Janos ◽  
Dusan Teichmann ◽  
Michal Dorda

The article addresses creation of a mathematical model for a real problem regarding time coordination of periodic train connections operated on single-track lines. The individual train connections are dispatched with a predefined tact, and their arrivals at and departures to predefined railway stations (transfer nodes) need to be coordinated one another. In addition, because the train connections are operated on single-track lines, trains that pass each other in a predefined railway stations must be also coordinated. To optimize the process, mathematical programming methods are used. The presented article includes a mathematical model of the given task, and the proposed model is tested with real data. The calculation experiments were implemented using optimization software Xpress-IVE.


2018 ◽  
Vol 239 ◽  
pp. 01055 ◽  
Author(s):  
Viktor Kharlamov ◽  
Denis Popov

The paper is devoted to the simulation of the test complex designed for energy-efficient load testing of induction machines by the method of mutual load with the exchange of electrical energy through the network. It is noted that for other similar test schemes, the mathematical model will have a slightly different form, but it will be identical in terms of asynchronous machines, network and frequency converter. The compiled mathematical model of the test complex allows studying the variable parameters of the system in all elements of the test scheme in static and dynamic modes of operation as well. The synthesized mathematical model can be used to determine the parameters of the equipment in the designed test complexes if the parameters of the test and load machines are known. The results of simulation of the test complex for the given parameters of the test and load induction machines are obtained.


Author(s):  
Harendra Kumar ◽  
Nutan Kumari Chauhan ◽  
Pradeep Kumar Yadav

Tasks allocation is an important step for obtaining high performance in distributed computing system (DCS). This article attempts to develop a mathematical model for allocating the tasks to the processors in order to achieve optimal cost and optimal reliability of the system. The proposed model has been divided into two stages. Stage-I, makes the ‘n' clusters of set of ‘m' tasks by using k-means clustering technique. To use the k-means clustering techniques, the inter-task communication costs have been modified in such a way that highly communicated tasks are clustered together to minimize the communication costs between tasks. Stage-II, allocates the ‘n' clusters of tasks onto ‘n' processors to minimize the system cost. To design the mathematical model, executions costs and inter tasks communication costs have been taken in the form of matrices. To test the performance of the proposed model, many examples are considered from different research papers and results of examples have compared with some existing models.


Author(s):  
Ahmed Yar ◽  
A. I. Bhatti ◽  
Qadeer Ahmed

A first principle based-control oriented gasoline engine model is proposed that is based on the mathematical model of the actual piston and crankshaft mechanism. Unlike conventional mean value engine models (MVEMs), which involve approximating the torque production mechanism with a volumetric pump, the proposed model obviates this rather over-simplistic assumption. The alleviation of this assumption leads to the additional features in the model such as crankshaft speed fluctuations and tension in bodies forming the mechanism. The torque production dynamics are derived through Lagrangian mechanics. The derived equations are reduced to a suitable form that can be easily used in the control-oriented model. As a result, the abstraction level is greatly reduced between the engine system and the mathematical model. The proposed model is validated successfully against a commercially available 1.3 L gasoline engine. Being a transparent and more capable model, the proposed model can offer better insight into the engine dynamics, improved control design and diagnosis solutions, and that too, in a unified framework.


Author(s):  
Ljubinko B Kevac ◽  
Mirjana M Filipovic ◽  
Ana M Djuric

Characteristic construction of cable-suspended parallel robot of artificial muscle, which presents an artificial forearm, is analyzed and synthesized. Novel results were achieved and presented. Results presented in this paper were initially driven to recognize and mathematically define undefined geometric relations of the artificial forearm since it was found that they strongly affect the dynamic response of this system. It gets more complicated when one has more complex system, which uses more artificial muscle subsystems, since these subsystems couple and system becomes more unstable. Unmodeled or insufficiently modeled dynamics can strongly affect the system’s instability. Because of that, the construction of this system and its new mathematical model are defined and presented in this paper. Generally, it can be said that the analysis of geometry of selected mechanism is the first step and very important step to establish the structural stability of these systems. This system is driven with two actuators, which need to work in a coordinated fashion. The aim of this paper is to show the importance of the geometry of this solution, which then strongly affects the system’s kinematics and dynamics. To determine the complexity of this system, it was presumed that system has rigid cables. Idea is to show the importance of good defined geometry of the system, which gives good basis for the definition of mathematical model of the system. Novel program package AMCO, artificial muscle contribution, was defined for the validation of the mathematical model of the system and for choice of its parameters. Sensitivity of the system to certain parameters is very high and hence analysis of this system needs to be done with a lot of caution. Some parameters are very influential on the possible implementation of the given task of the system. Only after choosing the parameters and checking the system through certain simulation results, control structure can be defined. In this paper, proportional–derivative controller was chosen.


Sign in / Sign up

Export Citation Format

Share Document