scholarly journals STABILITY ANALYSIS OF DC-DC BUCK CONVERTERS

2020 ◽  
Vol 4 (1) ◽  
pp. 01-06
Author(s):  
Ahmed M. Alturas ◽  
Abdulmajed O. Elbkosh ◽  
Othman Imrayed

This paper is focusing on the stability analysis of the voltage mode control buck converter controlled by pulse-width modulation (PWM). Using two different approaches, the nonlinear phenomena are investigated in two terms, slow scale and fast scale bifurcation. A complete design-oriented approach for studying the stability of dc-dc power converters and its bifurcation has been introduced. The voltage waveforms and attractors obtained from the circuit simulation have been studied. With the onset of instability, the phenomenon of subharmonics oscillations, quasi-periodicity, bifurcations, and chaos have been observed

Author(s):  
S. Ravi ◽  
Vitaliy Mezhuyev ◽  
K. Iyswarya Annapoorani ◽  
P. Sukumar

<p>This proposal proposes a DC/DC Buck Boost converter which has been used as a smooth starter for a DC Permanent Magnet Motor. In the existing system the DC/DC Buck Converter is used which provide the output less than the input Signal. Using buck converter it is difficult to increase the value of the input signal. Hence DC/DC Buck- Boost Converter used from which it is possible to get both the increased and decreased output from the given input. Previously pulse width modulation signals with respective to motor voltage is used. However they produce variations in the voltage and current of the motor. The above problem is overcome by using DC/DC Power converter. The proposed system with reduction in size, reduced ripples and increase in speed makes the system to operate at both low and high power applications. The proposed system results in higher efficiency, reduces the ripple content and the stress. The results are validated through MATLAB/Simulink and real time implementation.</p>


2013 ◽  
Vol 23 (07) ◽  
pp. 1350113 ◽  
Author(s):  
YIBO ZHAO ◽  
JIUCHAO FENG ◽  
YANFENG CHEN

This paper investigates nonlinear bifurcation behaviors in the input-series output-parallel (ISOP) connected DC–DC converters under peak current control operating in continuous conduction mode. Circuit simulation demonstrates typical nonlinear phenomena occurring in the ISOP connected DC–DC converters. A precise discrete-time mapping model is presented to analyze the stability and bifurcation phenomena in the ISOP connected DC–DC converters. Interaction of the outside voltage loop and inner loop leads to coexisting slow-scale and fast-scale bifurcation which is investigated under two different values of the bandwidth.


2021 ◽  
Vol 11 (4) ◽  
pp. 1395
Author(s):  
Abdelali El Aroudi ◽  
Natalia Cañas-Estrada ◽  
Mohamed Debbat ◽  
Mohamed Al-Numay

This paper presents a study of the nonlinear dynamic behavior a flying capacitor four-level three-cell DC-DC buck converter. Its stability analysis is performed and its stability boundaries is determined in the multi-dimensional paramertic space. First, the switched model of the converter is presented. Then, a discrete-time controller for the converter is proposed. The controller is is responsible for both balancing the flying capacitor voltages from one hand and for output current regulation. Simulation results from the switched model of the converter under the proposed controller are presented. The results show that the system may undergo bifurcation phenomena and period doubling route to chaos when some system parameters are varied. One-dimensional bifurcation diagrams are computed and used to explore the possible dynamical behavior of the system. By using Floquet theory and Filippov method to derive the monodromy matrix, the bifurcation behavior observed in the converter is accurately predicted. Based on justified and realistic approximations of the system state variables waveforms, simple and accurate expressions for these steady-state values and the monodromy matrix are derived and validated. The simple expression of the steady-state operation and the monodromy matrix allow to analytically predict the onset of instability in the system and the stability region in the parametric space is determined. Numerical simulations from the exact switched model validate the theoretical predictions.


2021 ◽  
Vol 22 (6) ◽  
pp. 313-320
Author(s):  
M. S. Lur’e ◽  
O. M. Lur’e ◽  
A. S. Frolov

This study is devoted to the consideration of a method for assessing the stability of systems with pulse-width modulation, based on the linearization of its equivalent system with pulse-width modulation. An approximate study of the dynamic modes of operation of systems with pulse-width modulation, taking into account the stability for the system of automatic control of the supply current of electromagnets under the conditions of external and internal interference, is carried out. Variants of execution of schemes of pulse-width regulators for the power supply of an electromagnet based on a unipolar and bipolar element with pulse-width modulation are presented. The possibility of linearization of systems with pulse-width modulation for the subsequent detailed assessment of the stability of such systems is shown. The prospects of using functional differential equations for stability analysis of automatic systems with pulse-width modulation are shown. The frequency characteristics of an equivalent pulse system are analyzed using the example of a current stabilization system of high-power electromagnets with a pulse-width regulator, taking into account the replacement of the latitude modulation by the amplitude one. Based on the analysis of the resulting transfer function, which is a stable linearized equivalent open system, the ways of evaluating the stability of the original system with pulse-width modulation using the Nyquist stability criterion are proposed. The conclusion is made about the advantage of a system with PWM, in relation to a system with AIM, in terms of stability, and recommendations are given for the use of the obtained data in the analysis oftransients in such systems.


Author(s):  
Cosmas Tatenda Katsambe ◽  
Vinukumar Luckose ◽  
Nurul Shahrizan Shahabuddin

Pulse width modulation (PWM) is used to generate pulses with variable duty cycle rate. The rapid rising and falling edges of PWM signal minimises the switching transition time and the associated switching losses. This paper presents a DC motor speed controller system using PWM technique. The PWM duty cycle is used to vary the speed of the motor by controlling the motor terminal voltage.The motor voltage and revolutions per minutes (RPM) obtained at different duty cycle rates. As the duty cycle increases, more voltage is applied to the motor. This contributes to the stronger magnetic flux inside the armature windings and the increasethe RPM. The characteristics and performance of the DC motor speed control system was investigated. In this paper, a PIC microcontroller and a DC-DC buck converter are employed in the DC motor speed controller system circuit. The microcontroller provides flexibility to the circuit by incorporating two push button switches in order to increase and to decrease the duty cycle rate. The characteristics and performance of the motor speed controller system using microcontroller was examined at different duty cycle rate ranging from 19% to 99%.


2016 ◽  
Vol 25 (09) ◽  
pp. 1650108 ◽  
Author(s):  
P. Karuppusamy ◽  
G. Vijayakumar ◽  
S. Sathishkumar

This paper presents a photovoltaic (PV) system to convert the solar energy into electrical energy. DC power from PV system is converted into AC power using multilevel inverters. Cascaded H-bridge (CHB) inverter and diode clamped inverter (DCI) are used to convert variable DC power into sinusoidal AC power. Harmonic content is the important part to improve the efficiency of the inverter. Harmonics of CHB inverter and DCI are simulated and analyzed with different pulse width modulation (PWM) techniques.


1996 ◽  
Vol 64 (2) ◽  
pp. 301-318 ◽  
Author(s):  
HEBERTT SIRA-RAMÍREZ ◽  
MAURICIO GARCÍA-ESTEBAN ◽  
RAFAEL A. PÉREZ-MORENO

Sign in / Sign up

Export Citation Format

Share Document