scholarly journals PieParty: visualizing cells from scRNA-seq data as pie charts

2021 ◽  
Vol 4 (5) ◽  
pp. e202000986
Author(s):  
Stefan Kurtenbach ◽  
James J Dollar ◽  
Anthony M Cruz ◽  
Michael A Durante ◽  
Christina L Decatur ◽  
...  

Single-cell RNA sequencing (scRNA-seq) has been a transformative technology in many research fields. Dimensional reduction techniques such as UMAP and tSNE are used to visualize scRNA-seq data in two or three dimensions for cells to be clustered in biologically meaningful ways. Subsequently, gene expression is frequently mapped onto these plots to show the distribution of gene expression across the plots, for instance to distinguish cell types. However, plotting each cell with only a single color leads to repetitive and unintuitive representations. Here, we present PieParty, which allows scRNA-seq data to be plotted such that every cell is represented as a pie chart, and every slice in the pie charts corresponds to the gene expression of a single gene. This allows for the simultaneous visualization of the expression of multiple genes and gene networks. The resulting figures are information dense, space efficient, and highly intuitive. PieParty is publicly available on GitHub at https://github.com/harbourlab/PieParty.

2020 ◽  
Author(s):  
Stefan Kurtenbach ◽  
James J. Dollar ◽  
Anthony M. Cruz ◽  
Michael A. Durante ◽  
J. William Harbour

AbstractSingle cell RNA sequencing (scRNA-seq) has been a transformative technology in many research fields. Dimensional reduction techniques such as UMAP and tSNE are used to visualize scRNA-seq data in two or three dimensions in order for cells to be clustered in biologically meaningful ways. Subsequently, gene expression is frequently mapped onto these plots to show the distribution of gene expression across the plots, for instance to distinguish cell types. However, plotting each cell with only one color leads to repetitive and unintuitive representations. Here, we present Pie Party, which allows scRNA-seq data to be plotted such that every cell is represented as a pie chart, and every slice in the pie charts corresponds to the gene expression of individual genes. This allows for the simultaneous visualization of the expression of multiple genes and gene networks. The resulting figures are information dense, space efficient and highly intuitive. PieParty is publicly available on GitHub at https://github.com/harbourlab/PieParty.


2020 ◽  
Vol 3 (1) ◽  
Author(s):  
Lisa N. Waylen ◽  
Hieu T. Nim ◽  
Luciano G. Martelotto ◽  
Mirana Ramialison

Abstract Unravelling spatio-temporal patterns of gene expression is crucial to understanding core biological principles from embryogenesis to disease. Here we review emerging technologies, providing automated, high-throughput, spatially resolved quantitative gene expression data. Novel techniques expand on current benchmark protocols, expediting their incorporation into ongoing research. These approaches digitally reconstruct patterns of embryonic expression in three dimensions, and have successfully identified novel domains of expression, cell types, and tissue features. Such technologies pave the way for unbiased and exhaustive recapitulation of gene expression levels in spatial and quantitative terms, promoting understanding of the molecular origin of developmental defects, and improving medical diagnostics.


F1000Research ◽  
2019 ◽  
Vol 7 ◽  
pp. 1306 ◽  
Author(s):  
Clarence K. Mah ◽  
Alexander T. Wenzel ◽  
Edwin F. Juarez ◽  
Thorin Tabor ◽  
Michael M. Reich ◽  
...  

Single-cell RNA sequencing (scRNA-seq) has emerged as a popular method to profile gene expression at the resolution of individual cells. While there have been methods and software specifically developed to analyze scRNA-seq data, they are most accessible to users who program. We have created a scRNA-seq clustering analysis GenePattern Notebook that provides an interactive, easy-to-use interface for data analysis and exploration of scRNA-Seq data, without the need to write or view any code. The notebook provides a standard scRNA-seq analysis workflow for pre-processing data, identification of sub-populations of cells by clustering, and exploration of biomarkers to characterize heterogeneous cell populations and delineate cell types.


2016 ◽  
Author(s):  
Valentine Svensson ◽  
Kedar Nath Natarajan ◽  
Lam-Ha Ly ◽  
Ricardo J Miragaia ◽  
Charlotte Labalette ◽  
...  

AbstractHigh-throughput single cell RNA sequencing (scRNA-seq) has become an established and powerful method to investigate transcriptomic cell-to-cell variation, and has revealed new cell types, and new insights into developmental process and stochasticity in gene expression. There are now several published scRNA-seq protocols, which all sequence transcriptomes from a minute amount of starting material. Therefore, a key question is how these methods compare in terms of sensitivity of detection of mRNA molecules, and accuracy of quantification of gene expression. Here, we assessed the sensitivity and accuracy of many published data sets based on standardized spike-ins with a uniform raw data processing pipeline. We developed a flexible and fast UMI counting tool (https://github.com/vals/umis) which is compatible with all UMI based protocols. This allowed us to relate these parameters to sequencing depth, and discuss the trade offs between the different methods. To confirm our results, we performed experiments on cells from the same population using three different protocols. We also investigated the effect of RNA degradation on spike-in molecules, and the average efficiency of scRNA-seq on spike-in molecules versus endogenous RNAs.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Tianyuan Lu ◽  
Jessica C. Mar

Abstract Background It is a long established fact that sex is an important factor that influences the transcriptional regulatory processes of an organism. However, understanding sex-based differences in gene expression has been limited because existing studies typically sequence and analyze bulk tissue from female or male individuals. Such analyses average cell-specific gene expression levels where cell-to-cell variation can easily be concealed. We therefore sought to utilize data generated by the rapidly developing single cell RNA sequencing (scRNA-seq) technology to explore sex dimorphism and its functional consequences at the single cell level. Methods Our study included scRNA-seq data of ten well-defined cell types from the brain and heart of female and male young adult mice in the publicly available tissue atlas dataset, Tabula Muris. We combined standard differential expression analysis with the identification of differential distributions in single cell transcriptomes to test for sex-based gene expression differences in each cell type. The marker genes that had sex-specific inter-cellular changes in gene expression formed the basis for further characterization of the cellular functions that were differentially regulated between the female and male cells. We also inferred activities of transcription factor-driven gene regulatory networks by leveraging knowledge of multidimensional protein-to-genome and protein-to-protein interactions and analyzed pathways that were potential modulators of sex differentiation and dimorphism. Results For each cell type in this study, we identified marker genes with significantly different mean expression levels or inter-cellular distribution characteristics between female and male cells. These marker genes were enriched in pathways that were closely related to the biological functions of each cell type. We also identified sub-cell types that possibly carry out distinct biological functions that displayed discrepancies between female and male cells. Additionally, we found that while genes under differential transcriptional regulation exhibited strong cell type specificity, six core transcription factor families responsible for most sex-dimorphic transcriptional regulation activities were conserved across the cell types, including ASCL2, EGR, GABPA, KLF/SP, RXRα, and ZF. Conclusions We explored novel gene expression-based biomarkers, functional cell group compositions, and transcriptional regulatory networks associated with sex dimorphism with a novel computational pipeline. Our findings indicated that sex dimorphism might be widespread across the transcriptomes of cell types, cell type-specific, and impactful for regulating cellular activities.


Author(s):  
Di He ◽  
Di Wang ◽  
Ping Lu ◽  
Nan Yang ◽  
Zhigang Xue ◽  
...  

Abstract Lung adenocarcinoma (LUAD) harboring EGFR mutations prevails in Asian population. However, the inter-patient and intra-tumor heterogeneity has not been addressed at single-cell resolution. Here we performed single-cell RNA sequencing (scRNA-seq) of total 125,674 cells from seven stage-I/II LUAD samples harboring EGFR mutations and five tumor-adjacent lung tissues. We identified diverse cell types within the tumor microenvironment (TME) in which myeloid cells and T cells were the most abundant stromal cell types in tumors and adjacent lung tissues. Within tumors, accompanied by an increase in CD1C+ dendritic cells, the tumor-associated macrophages (TAMs) showed pro-tumoral functions without signature gene expression of defined M1 or M2 polarization. Tumor-infiltrating T cells mainly displayed exhausted and regulatory T-cell features. The adenocarcinoma cells can be categorized into different subtypes based on their gene expression signatures in distinct pathways such as hypoxia, glycolysis, cell metabolism, translation initiation, cell cycle, and antigen presentation. By performing pseudotime trajectory, we found that ELF3 was among the most upregulated genes in more advanced tumor cells. In response to secretion of inflammatory cytokines (e.g., IL1B) from immune infiltrates, ELF3 in tumor cells was upregulated to trigger the activation of PI3K/Akt/NF-κB pathway and elevated expression of proliferation and anti-apoptosis genes such as BCL2L1 and CCND1. Taken together, our study revealed substantial heterogeneity within early-stage LUAD harboring EGFR mutations, implicating complex interactions among tumor cells, stromal cells and immune infiltrates in the TME.


BMC Biology ◽  
2017 ◽  
Vol 15 (1) ◽  
Author(s):  
Cathryn R. Cadwell ◽  
Rickard Sandberg ◽  
Xiaolong Jiang ◽  
Andreas S. Tolias

Abstract Individual neurons vary widely in terms of their gene expression, morphology, and electrophysiological properties. While many techniques exist to study single-cell variability along one or two of these dimensions, very few techniques can assess all three features for a single cell. We recently developed Patch-seq, which combines whole-cell patch clamp recording with single-cell RNA-sequencing and immunohistochemistry to comprehensively profile the transcriptomic, morphologic, and physiologic features of individual neurons. Patch-seq can be broadly applied to characterize cell types in complex tissues such as the nervous system, and to study the transcriptional signatures underlying the multidimensional phenotypes of single cells.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Xiuying Li ◽  
Guillaume Noell ◽  
Tracy Tabib ◽  
Alyssa D. Gregory ◽  
Humberto E. Trejo Bittar ◽  
...  

Abstract Background Whole lung tissue transcriptomic profiling studies in chronic obstructive pulmonary disease (COPD) have led to the identification of several genes associated with the severity of airflow limitation and/or the presence of emphysema, however, the cell types driving these gene expression signatures remain unidentified. Methods To determine cell specific transcriptomic changes in severe COPD, we conducted single-cell RNA sequencing (scRNA seq) on n = 29,961 cells from the peripheral lung parenchymal tissue of nonsmoking subjects without underlying lung disease (n = 3) and patients with severe COPD (n = 3). The cell type composition and cell specific gene expression signature was assessed. Gene set enrichment analysis (GSEA) was used to identify the specific cell types contributing to the previously reported transcriptomic signatures. Results T-distributed stochastic neighbor embedding and clustering of scRNA seq data revealed a total of 17 distinct populations. Among them, the populations with more differentially expressed genes in cases vs. controls (log fold change >|0.4| and FDR = 0.05) were: monocytes (n = 1499); macrophages (n = 868) and ciliated epithelial cells (n = 590), respectively. Using GSEA, we found that only ciliated and cytotoxic T cells manifested a trend towards enrichment of the previously reported 127 regional emphysema gene signatures (normalized enrichment score [NES] = 1.28 and = 1.33, FDR = 0.085 and = 0.092 respectively). Among the significantly altered genes present in ciliated epithelial cells of the COPD lungs, QKI and IGFBP5 protein levels were also found to be altered in the COPD lungs. Conclusions scRNA seq is useful for identifying transcriptional changes and possibly individual protein levels that may contribute to the development of emphysema in a cell-type specific manner.


PLoS ONE ◽  
2020 ◽  
Vol 15 (12) ◽  
pp. e0243360
Author(s):  
Johan Gustafsson ◽  
Jonathan Robinson ◽  
Juan S. Inda-Díaz ◽  
Elias Björnson ◽  
Rebecka Jörnsten ◽  
...  

Single-cell RNA sequencing has become a valuable tool for investigating cell types in complex tissues, where clustering of cells enables the identification and comparison of cell populations. Although many studies have sought to develop and compare different clustering approaches, a deeper investigation into the properties of the resulting populations is lacking. Specifically, the presence of misclassified cells can influence downstream analyses, highlighting the need to assess subpopulation purity and to detect such cells. We developed DSAVE (Down-SAmpling based Variation Estimation), a method to evaluate the purity of single-cell transcriptome clusters and to identify misclassified cells. The method utilizes down-sampling to eliminate differences in sampling noise and uses a log-likelihood based metric to help identify misclassified cells. In addition, DSAVE estimates the number of cells needed in a population to achieve a stable average gene expression profile within a certain gene expression range. We show that DSAVE can be used to find potentially misclassified cells that are not detectable by similar tools and reveal the cause of their divergence from the other cells, such as differing cell state or cell type. With the growing use of single-cell RNA-seq, we foresee that DSAVE will be an increasingly useful tool for comparing and purifying subpopulations in single-cell RNA-Seq datasets.


2021 ◽  
Vol 11 ◽  
Author(s):  
Meijia Gu ◽  
Ti He ◽  
Yuncong Yuan ◽  
Suling Duan ◽  
Xin Li ◽  
...  

BackgroundCervical cancer is one of the most common gynecological cancers worldwide. The tumor microenvironment significantly influences the therapeutic response and clinical outcome. However, the complex tumor microenvironment of cervical cancer and the molecular mechanisms underlying chemotherapy resistance are not well studied. This study aimed to comprehensively analyze cells from pretreated and chemoresistant cervical cancer tissues to generate a molecular census of cell populations.MethodsBiopsy tissues collected from patients with cervical squamous cell carcinoma, cervical adenocarcinoma, and chronic cervicitis were subjected to single-cell RNA sequencing using the 10× Genomics platform. Unsupervised clustering analysis of cells was performed to identify the main cell types, and important cell clusters were reclustered into subpopulations. Gene expression profiles and functional enrichment analysis were used to explore gene expression and functional differences between cell subpopulations in cervicitis and cervical cancer samples and between chemoresistant and chemosensitive samples.ResultsA total of 24,371 cells were clustered into nine separate cell types, including immune and non-immune cells. Differentially expressed genes between chemoresistant and chemosensitive patients enriched in the phosphoinositide 3-kinase (PI3K)/AKT pathway were involved in tumor development, progression, and apoptosis, which might lead to chemotherapy resistance.ConclusionsOur study provides a comprehensive overview of the cancer microenvironment landscape and characterizes its gene expression and functional difference in chemotherapy resistance. Consequently, our study deepens the insights into cervical cancer biology through the identification of gene markers for diagnosis, prognosis, and therapy.


Sign in / Sign up

Export Citation Format

Share Document