scholarly journals Сhanging the lubricity of diesel fuel with vegetable oil additive

2021 ◽  
Vol 18 (5) ◽  
pp. 534-543
Author(s):  
S. N. Krivtsov ◽  
T. I. Krivtsova

Intriduction. The environmental safety of cars with a diesel engine does not lose its relevance. In the conditions of stricter requirements for diesel fuel, the content of many substances harmful to the environment, including sulfur, is not allowed. As is known, low-sulfur fuels require the presence of additives that improve the lubricating properties of diesel fuel. Non-compliance with the requirements for lubricity significantly affects the resource of the fuel supply system of a diesel engine, primarily the Common Rail system. In order with the circumstances listed above, we hypothesized that vegetable oil can serve in small concentrations to improve the lubricating properties of fuels.Materials and methods. In our research, we conducted experiments using the standard HFRR method (highfrequency translational motion of a ball rubbing against a plate in fuel). A microscope was used to visually assess the wear spots and measure their size. Diesel fuel was taken as samples for experiments and vegetable oil was added to it as an additive in certain proportions.Discussion and conclusions. The vegetable oil additive can improve the lubricity of diesel fuel, even if it does not comply with GOST for this parameter. The experiments conducted allow us to conclude that the vegetable oil additive as a percentage of diesel fuel almost linearly reduces the diameter of the wear spot

2021 ◽  
Author(s):  
Nur Allif Fathurrahman ◽  
Ahmad Syihan Auzani ◽  
Rizal Zaelani ◽  
Riesta Anggarani ◽  
Lies Aisyah ◽  
...  

Author(s):  
K. Ashok ◽  
N. Alagumurthi ◽  
C. G. Saravanan

An organic compound, Dioxane, is blended to reduce the viscosity of raw vegetable oil (Mahua). A dilute blend was prepared by mixing with raw vegetable oil (Mahua) and 10% dioxane in volume basis. Tests were conducted on a single cylinder, water cooled, DI diesel engine coupled with the eddy current dynamometer. Emissions like HC, NOX, etc., were measured by using gas analyzer and smoke density was measured by using smoke meter. The cylinder pressure, heat release rate were measured by combustion analyzer. From the experimental investigation, it was observed that operating at a blend ratio of 10% diesel-80% mahua oil-10% Dioxane significantly reduced the HC and NOx emissions when compared to diesel fuel. It was also observed, the variation of break thermal efficiency is almost same to that of diesel fuel. Hence, it can be concluded that raw vegetable oil (mahua) with Dioxane blend could partially replace the diesel, as a fuel.


Author(s):  
Yaodong Wang ◽  
Neil Hewitt ◽  
Philip Eames ◽  
Shengchuo Zeng ◽  
Jincheng Huang ◽  
...  

Experimental tests have been carried out to evaluate the performance and emissions characteristics of a diesel engine when fuelled by blends of 25% vegetable oil with 75% diesel fuel, 50% vegetable oil with 50% diesel fuel, 75% vegetable oil with 25% diesel fuel, and 100% vegetable oil, compared with the performance, emissions characteristics of 100% diesel fuel. The series of tests were conducted and repeated six times using each of the test fuels. 100% of ordinary diesel fuel was also used for comparison purposes. The engine worked at a fixed speed of 1500 r/min, but at different loads respectively, i.e. 0%, 25%, 50%, 75% and 100% of the engine load. The performance and the emission characteristics of exhaust gases of the engine were compared and analyzed. The experimental results showed that the carbon monoxide (CO) emission from the vegetable oil and vegetable oil/diesel fuel blends were nearly all higher than that from pure diesel fuel at the engine 0% load to 75% load. Only at the 100% engine load point, the CO emission of vegetable oil and vegetable oil/diesel fuel blends was lower than that of diesel fuel. The hydrocarbon (HC) emission of vegetable oil and vegetable/diesel fuel blends were lower than that of diesel fuel, except that 50% of vegetable oil and 50% diesel fuel blend was a little higher than that of diesel fuel. The oxides of nitrogen (NOx) emission of vegetable oil and vegetable oil/diesel fuel blends, at the range of tests, were lower than that of diesel fuel.


Author(s):  
K. Anandavelu ◽  
N. Alagumurthi ◽  
C. G. Saravanan

Light Vegetable oils are a promising alternative among the different diesel fuel alternatives. Using Light Vegetable oils in diesel engine is not a new idea. The Vegetable oils have high energy content. However, the high viscosity, poor volatility and cold flow characteristics of vegetable oils can cause some problems such as severe engine deposits, piston ring sticking and thickening of lubrication oil due to long-term use in diesel engines. Diesel fueled engine have the disadvantage of producing Smoke, Particulate Matter and Nitrogen Oxides and are now subjected to increasingly severe legislation of Emission norms. The required levels are difficult to achieve through engine design alone. Even with high-grade fuels, catalytic systems are being extensively investigated to reduce the diesel engine emission. But there are still difficulties in operation of these. This leads to replacement of diesel fuel with renewable fuels has been set target worldwide to reduce the diesel exhaust pollution. The energy of the light vegetable oil can be released more efficiently with the concept of low heat rejection (LHR) engine. The aim of the study is to apply LHR engine for improving the engine performance and reducing the emission when light vegetable oil (turpentine oil) is used as an alternate fuel. The work was carried out in two stages. In first Stage, the turpentine oil (20, 40, 60, 80 & 100, v/v) with diesel blends used in direct injection diesel engine and to identify best blend with respect to performance and emission. In second Stage, the work has been carried out by the converting direct injection diesel engine in to a LHR engine and the effects of different blends of turpentine oil (20, 40, 60, 80 & 100, v/v) with diesel fuel used in LHR engine and its performance, emission and combustion characteristics have been investigated experimentally. From the experimental investigation, the combination of LHR engine with blended fuels shows the better performance when compared to diesel engine. The smoke density decreases for the diesel engine (without LHR) whereas with the effect of LHR, Oxides of Nitrogen will be reduced and heat release rate also reduces.


2020 ◽  
Vol 157 ◽  
pp. 01004
Author(s):  
Evgeny Kossov ◽  
Ivan Andronchev ◽  
Vitaliy Asabin ◽  
Anatoly Silyuta ◽  
Lidia Kossova

Today, no one doubts the necessity of widespread applying of gas fuel both in industry and in transport. The price, environmental safety and availability of this type of fuel play a crucial role. Russian Railways has also taken a number of decisions to develop the design and construction of gas-fueled locomotives. The work is being carried out in two directions: locomotives will be created that run on gas fuel using gas turbine and gas piston engines with full replacement of diesel fuel, as well as gas locomotives with diesel engines that run on a gas-diesel cycle. The latter are attractive because the gas-diesel engine has higher technical and economic characteristics and can be easily transformed into a locomotive running on diesel fuel, which can be of strategic importance.


2001 ◽  
Author(s):  
M. Borghi ◽  
M. Milani ◽  
M. Piraccini

Abstract The paper is aimed at studying the overall dynamic behavior of the Common Rail Injection System actually used on a 4 cylinder industrial Diesel engine. Firstly, the paper introduces the main characteristics of a lumped and distributed parameters model of the high pressure branch of an actual Common Rail System, and the main hypotheses assumed to model it using a multi-port approach code for the analysis of the dynamic response of hydraulic systems submitted to fast transients. The model of the Common Rail System is then used to study its dynamic behavior when involved in the handling of the engine injection cycle for medium values of the crankshaft regime and for different pressure levels in the Rail. The analysis is performed applying to the injectors, to the pressure control valve and to the high-pressure pump the control strategies imposed by the Electronic Central Unit (ECU), as actually implemented into an industrial ECU for Diesel engine management. The model reliability and accuracy are evidenced through a numerical vs. experimental data comparison, mainly in term of rail pressure dynamic behavior. The analysis successively outlined in the paper allows to state how the hydraulic behavior of the Common Rail System interact with the electro-hydraulic injectors dynamics, and to determine the influence of this interaction on the total injected mass per cycle.


2020 ◽  
Vol 17 ◽  
pp. 00077 ◽  
Author(s):  
Alexei Khokhlov ◽  
Anton Khokhlov ◽  
Dmitry Maryin ◽  
Denis Molochnikov ◽  
Ilnar Gayaziev

The article is devoted to the solution of the problem associated with the partial substitution of marketable mineral diesel fuel (DF) with mixed vegetable-mineral (MDF) engine fuel. The bio-component of MDF is vegetable oil, for example, Camelina seed oil. A design option of a dual-fuel feeding system has been proposed, the main component of which is a mixing and metering unit for vegetable oil and mineral diesel fuel which allows electric metering units controlled by an electronic control unit (ECU) to respond to signals from diesel load-speed sensors (crankshaft speed, injector rack position (fuel injection pump)) and temperature gauge of camelina oil, to ensure the feed of mixed diesel fuel with components of different content. The use of mixed diesel fuel based on vegetable oil, containing for example 50 % of mineral commercial fuel and 50 % of camelina oil, makes it possible with a slight decrease in the effective power (not more than 6 %) and some increase in the specific effective consumption of mixed fuel (up to 14 %) to save 50 % of fuel of petroleum origin, as well as to reduce the smoke opacity of exhaust gases by 17–20 % and reduce the content of carbon oxide by 35–40 % compared with the work of a diesel engine on commercial mineral diesel fuel.


Sign in / Sign up

Export Citation Format

Share Document