scholarly journals Characteristics of dual carbapenemase-producing Klebsiella pneumoniae strains from an outbreak in Venezuela: a retrospective study

2020 ◽  
Vol 44 ◽  
pp. 1
Author(s):  
Dianny Martínez ◽  
Luisa Caña ◽  
Hectorina Rodulfo ◽  
José García ◽  
Diorelis González ◽  
...  

Objective. To characterize carbapenemase-producing Klebsiella pneumoniae isolated from patients treated at a hospital in Cumaná, Sucre, Venezuela. Methods. This was a retrospective study conducted at the general hospital in Cumaná where 58 K. pneumoniae strains were analyzed for resistance to antimicrobials, specifically carbapenems, in January – June 2015. Production of metallo-β-lactamases and serine carbapenemases was determined by the double-disc synergy test, using EDTA-sodium mercaptoacetic acid and 3-aminophenyl boronic acid discs, respectively. Multiplex-PCR was used to detect genes coding for carbapenemases. Molecular typing using ERIC-PCR determined the presence of clones. Results. Four strains of K. pneumoniae resistant to carbapenems were identified. Phenotypic methods for detection of metallo-β-lactamases and serine carbapenemases were positive, and PCR demonstrated the co-presence of blaNDM and blaKPC genes in all four strains. ERIC-PCR identified two clones circulating in the hospital. Conclusions. Infection control strategies are needed at the central hospital in Cumaná and its surrounding areas to prevent the spread of these pathogens, especially given the high levels of migration from Venezuela to other countries in South America.

2012 ◽  
Vol 61 (4) ◽  
pp. 311-313 ◽  
Author(s):  
ALICJA SĘKOWSKA ◽  
DOROTA KAMIŃSKA ◽  
BEATA NAKONOWSKA ◽  
EUGENIA GOSPODAREK

Thirty three isolates of K. pneumoniae were studied. The strains were cultured from different clinical specimens received from patients hospitalised at a Neurosurgery Unit at the Dr Jurasz University Hospital in Bydgoszcz. Production of ESBL was assessed using double disk synergy test. The genomic DNA was extracted from the strains separated by PFGE after digesting with XbaI endonuclease. Production of ESBL was detected in 81.8% of K. pneumoniae isolates. Molecular typing results revealed a great genetic diversity among K. pneumoniae isolates. All repeated PFGE patterns were detected in 12 (36.3%) K. pneumoniae isolates.


Author(s):  
Roya Ghanavati ◽  
Hossein Kazemian ◽  
Parisa Asadollahi ◽  
Hamid Heidari ◽  
Gholamreza Irajian ◽  
...  

Background: Multidrug resistance among ESBL producing isolates has limited the administration of proper antibiotics. It is therefore important to monitor the resistance patterns of Klebsiella pneumoniae isolates and provide infection control strategies to prevent nosocomial outbreaks. This study was aimed to determine antimicrobial resistance patterns of K. pneumoniae isolates obtained from wound infections of patients in Tehran, Iran. Methods: Totally, 102 K. pneumoniae isolates were obtained from wound infections of patients in Tehran, Iran. Phenotypic ESBL and carbapenemase production was assessed using double-disc synergy test (DDST) and modified Hodge test (MHT), respectively. PCR was performed for the detection of ESBL, carbapenemase, quinolone and aminoglycoside resistance genes. Results: Forty-six (45.1%) and 23 (22.5%) isolates, out of the 102 isolates, were phenotypically detected as ESBL and carbapenemase producers, respectively. The PCR results showed that 80/102 (78.4%) and 51/102 (50%) isolates possessed at least one of the assessed ESBL and carbapenemase genes, respectively. Quinolone resistance determinants (QRDs) and aac(6')-Ib genes were found amongst 50 (49%) and 67 (65.7%) isolates, respectively. Four isolates carried the blaTEM, blaSHV, blaCTX-M, qnrB, qnrS and aac(6’)-Ib genes, simultaneously. Conclusion: Because of the presence of multiple resistance genes among some K. pneumoniae strains, antibiotic agents should be used with caution to preserve their efficacy in case of life-threatening infections.


2019 ◽  
Vol 19 (1) ◽  
pp. 46-54 ◽  
Author(s):  
Shima Mahmoudi ◽  
Babak Pourakbari ◽  
Aliakbar Rahbarimanesh ◽  
Mohammad Reza Abdosalehi ◽  
Keyghobad Ghadiri ◽  
...  

Introduction: Klebsiella pneumoniae is a common cause of nosocomial infections; however, there is limited information in Iran regarding nosocomial outbreaks due to extended-spectrum β–lactamase (ESBL) producing K pneumoniae strains, particularly using molecular methods. The present study focused on the molecular mechanism of ESBL resistance and genetic relatedness in K. pneumoniae isolates causing nosocomial infections in an Iranian referral hospital. Material and Methods: This study evaluated the antimicrobial resistance and molecular epidemiology of K. pneumoniae causing nosocomial infections in children between October 2013 and March 2014. The ESBL detection was carried out for all the isolates by the CLSI method and PCR was carried out for the detection of the blaSHV, blaTEM, and blaCTX-M genes among ESBL-producing K. pneumonia. Molecular typing of the K. pneumoniae was performed using random amplification of polymorphic DNA-polymerase chain reaction (RAPD-PCR). Results: A total of 30 isolates of K. pneumoniae were used for epidemiological analysis. High rates of resistance to cefotaxime (n=29, 97%), cefazolin (n=29, 97%), cefepime (n=25, 83%) and gentamicin (n=23, 77%) were observed. A total of 29 strains (97%) produced ESBLs. The frequency of blaSHV, blaCTX-M and blaTEM genes among these isolates was 83% (n=25), 70% (n=21) and 57% (n=17), respectively. Surprisingly 11 isolated (37%) carried blaSHV, blaCTX-M and blaTEM genes simultaneously. Moreover, the concurrent presence of “blaSHV and blaCTX-M” and “blaSHV and blaTEM” was seen in 8 (27%) and 4 (13%) isolates, respectively. RAPDPCR analyses revealed that K. pneumoniae isolates belonged to 2 RAPD-PCR types among which one cluster counted for 28 isolates. Conclusion: To our knowledge, this is the first published report of a nosocomial outbreak of ESBL-producing K. pneumoniae in children in Iran. Although the epidemiology of nosocomial infections with ESBL-producing organisms has not yet been explored in depth in Iran, our findings suggest that ESBL-producing organisms are already an established public health threat in our country.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Richard S. Gashururu ◽  
Samuel M. Githigia ◽  
Methode N. Gasana ◽  
Richard Habimana ◽  
Ndichu Maingi ◽  
...  

Abstract Background Glossina (tsetse flies) biologically transmit trypanosomes that infect both humans and animals. Knowledge of their distribution patterns is a key element to better understand the transmission dynamics of trypanosomosis. Tsetse distribution in Rwanda has not been well enough documented, and little is known on their current distribution. This study determined the current spatial distribution, abundance, diversity, and seasonal variations of tsetse flies in and around the Akagera National Park. Methods A longitudinal stratified sampling following the seasons was used. Biconical traps were deployed in 55 sites for 6 consecutive days of each study month from May 2018 to June 2019 and emptied every 48 h. Flies were identified using FAO keys, and the number of flies per trap day (FTD) was used to determine the apparent density. Pearson chi-square (χ2) and parametrical tests (t-test and ANOVA) were used to determine the variations between the variables. The significance (p < 0.05) at 95% confidence interval was considered. Logistic regression was used to determine the association between tsetse occurrence and the associated predictors. Results A total of 39,516 tsetse flies were collected, of which 73.4 and 26.6% were from inside Akagera NP and the interface area, respectively. Female flies accounted for 61.3 while 38.7% were males. Two species were identified, i.e. G. pallidipes [n = 29,121, 7.4 flies/trap/day (FTD)] and G. morsitans centralis (n = 10,395; 2.6 FTD). The statistical difference in numbers was significant between the two species (p = 0.000). The flies were more abundant during the wet season (15.8 FTD) than the dry season (4.2 FTD). Large numbers of flies were trapped around the swamp areas (69.1 FTD) inside the park and in Nyagatare District (11.2 FTD) at the interface. Glossina morsitans was 0.218 times less likely to occur outside the park. The chance of co-existing between the two species reduced outside the protected area (0.021 times). Conclusions The occurrence of Glossina seems to be limited to the protected Akagera NP and a narrow band of its surrounding areas. This finding will be crucial to design appropriate control strategies. Glossina pallidipes was found in higher numbers and therefore is conceivably the most important vector of trypanosomosis. Regional coordinated control and regular monitoring of Glossina distribution are recommended. Graphic Abstract


2011 ◽  
Vol 3 (01) ◽  
pp. 037-042 ◽  
Author(s):  
Varsha K Vaidya

ABSTRACT Background: The purpose of this work was to study the acquisition of new antibiotic-resistant genes carried by extended spectrum β-lactamase (ESBL)-producing Enterobacteriaceae via horizontal transfer to understand their rampant spread in the hospitals and in the community. Materials and Methods: A retrospective analysis of 120 ESBL screen-positive isolates of Escherichia coli and Klebsiella pneumoniae, which were subjected to antimicrobial susceptibility testing, was carried out. The Double Disc Synergy Test (DDST) and Inhibitor-Potentiation Disc Diffusion Test (IPDD) were employed for confirmation of ESBL activity. The transferability of the associated antibiotic resistance for amoxicillin, amikacin, gentamicin, cefotaxime and ceftriaxone was elucidated by intra- and intergenus conjugation in Escherichia coli under laboratory as well as under simulated environmental conditions. Transformation experiments using plasmids isolated by alkaline lysis method were performed to study the transferability of resistance genes in Klebsiella pneumoniae isolates. Results : ESBL production was indicated in 20% each of the Escherichia coli and Klebsiella pneumoniae isolates. All the ESBL isolates showed co- resistance to various other groups of antibiotics, including 3GC antibiotics, though all the isolates were sensitive to both the carbapenems tested. Conjugation-mediated transfer of resistance under laboratory as well as environmental conditions at a frequency of 3-4 x 10-5 , and transformation-mediated dissemination of cefotaxime and gentamicin resistance shed light on the propensity of ESBL producers for horizontal transfer. Conclusions: The transfer of resistant markers indicated availability of a large pool of resistance genes in the hospital setting as well as in the environment, facilitating long-term persistence of organisms.


2019 ◽  
Vol In Press (In Press) ◽  
Author(s):  
Azam Elahi ◽  
Alisha Akya ◽  
Roya Chegene Lorestani ◽  
Keyghobad Ghadiri ◽  
Shokofe Baakhshii

Sign in / Sign up

Export Citation Format

Share Document