Subthreshold Leakage reduction Strategies for the Design of Low Power Sram

2013 ◽  
Vol 1 (4) ◽  
pp. 6-13
Author(s):  
Vanitha . ◽  
◽  
M. Parimaladevi ◽  
D. Sharmila ◽  
◽  
...  
Author(s):  
Woo Wei Kai ◽  
Nabihah Ahmad ◽  
Mohamad Hairol Jabbar

In digital system, the full adders are fundamental circuits that are used for arithmetic operations. Adder operation can be used to implement and perform calculation of the multipliers, subtraction, comparators, and address operation in an Arithmetic Logic Unit (ALU). The subthreshold leakage current increasing as proportional with the scaling down of oxide thickness and transistor in short channel sizes. In this paper, a Gate-diffusion Input (GDI) circuit design technique allow minimization the number of transistor while maintaining low complexity of logic design and low power realization of Variable Body Biasing (VBB) technique to reduce the static power consumption. The Silterra 90nm process design kit (PDK) was used to design 8-bit full adder with VBB technique in full custom methodology by using Synopsys Electronic Design Automation (EDA) tools. The simulation of 8-bit full adder was compared within a conventional bias technique and VBB technique with operating voltage of  supply. The result showed the reduction of VBB technique in term of peak power,  and average power,   compare with conventional bias technique. Moreover, the Power Delay Product (PDP) showed 1.29pJ in VBB technique compare with conventional bias mode 1.67pJ. The area size of 8-Bit full adder was 10μm×23μm.


Author(s):  
Sumanta Acharya ◽  
Huitao Yang ◽  
Chander Prakash ◽  
Ron Bunker

Numerical calculations are performed to explore different strategies for reducing tip leakage flow and heat transfer on the GE-E3 High-Pressure-Turbine (HPT) rotor blade. The calculations are performed for a single blade with periodic conditions imposed along the two boundaries in the circumferential-pitch direction. Several leakage reduction strategies are considered, all for a tip-clearance of 1.5% of the blade span, a pressure ratio (ratio of inlet total pressure to exit static pressure) of 1.2, and an inlet turbulence level of 6.1%. The first set of leakage reduction strategies explored include different squealer tip configurations: pressure-side squealer, suction-side squealer, mean-camber line squealer, and pressure plus suction side squealers located either along the edges of the blade or moved inwards. The suction-side squealer is shown to have the lowest heat transfer coefficient distribution and the lowest leakage flow rates. Two tip-desensitization strategies are explored. The first strategy involves a pressure-side winglet shaped to be thickest at the location with the largest pressure difference across the blade. The second strategy involves adding inclined ribs on the blade tip with the ribs normal to the local flow direction. While both strategies lead to reduction in the leakage flow and tip heat transfer rates, the ribbed tip exhibits considerably lower heat transfer coefficients. In comparing the two desensitization schemes with the various squealer tip configurations, the suction side squealer still exhibits the lowest heat transfer coefficient and leakage flow rates.


Sign in / Sign up

Export Citation Format

Share Document