scholarly journals Role of Amino Acid Arginine for Broiler Production: A Review

2018 ◽  
Vol 2 (3) ◽  
pp. 1-6
Author(s):  

Amino acids are known as anabolic factors that are essential for formation of muscle by stimulating protein synthesis while inhibiting proteolysis, and they are significant component for the synthesis of various nitrogenous compounds. There are 20 amino acids are essential to require in cell for formation of body protein of which about 10 amino acids, which cannot be synthesized by the birds are termed essential. Among the essential amino acid arginine one of the essential amino acids for chickens because, like other birds, they are unable to obtain Arginine from endogenous sources due to the absence of most of the enzymes involved in the urea cycle. This amino acid involved in synthesis of proline, hydroxyl proline and polyamines which are essential for connective tissue synthesis as well as increased growth of chicken. Moreover, L-arginine (L-Arg) is effective for reducing fat deposition in broiler. Moreover, it decrease heat stress increase meat quality and increase immune response of broiler. This re-view presents the recent advances in the relevance of the inclusion of excess L-Arginine in broiler ration to growth, fat deposition and immune response in broiler.

2019 ◽  
Vol 110 (2) ◽  
pp. 255-264 ◽  
Author(s):  
Paolo Tessari

ABSTRACT Background Essential amino acids (EAAs) are key factors in determining dietary protein quality. Their RDAs have been estimated. However, although nonessential amino acids (NEAAs) are utilized for protein synthesis too, no estimates of their usage for body protein replenishment have been proposed so far. Objective The aim of this study was to provide minimum, approximate estimates of NEAA usage for body protein replenishment/conservation in humans. Methods A correlation between the pattern of both EAAs and NEAAs in body proteins, and their usage, was assumed. In order to reconstruct an “average” amino acid pattern/composition of total body proteins (as grams of amino acid per gram of protein), published data of relevant human organs/tissues (skeletal muscle, liver, kidney, gut, and collagen, making up ∼74% of total proteins) were retrieved. The (unknown) amino acid composition of residual proteins (∼26% of total proteins) was assumed to be the same as for the sum of the aforementioned organs excluding collagen. Using international EAA RDA values, an average ratio of EAA RDA to the calculated whole-body EAA composition was derived. This ratio was then used to back-calculate NEAA usage for protein replenishment. The data were calculated also using estimated organ/tissue amino acid turnover. Results The individual ratios of World Health Organization/Food and Agriculture Organization/United Nations University RDA to EAA content ranged between 1.35 (phenylalanine + tyrosine) and 3.68 (leucine), with a mean ± SD value of 2.72 ± 0.81. In a reference 70-kg subject, calculated NEAA usage for body protein replenishment ranged from 0.73 g/d for asparagine to 3.61 g/d for proline. Use of amino acid turnover data yielded similar results. Total NEAA usage for body protein replenishment was ∼19 g/d (45% of total NEAA intake), whereas ∼24 g/d was used for other routes. Conclusion This method may provide indirect minimum estimates of the usage of NEAAs for body protein replacement in humans.


1996 ◽  
Vol 271 (4) ◽  
pp. E733-E741 ◽  
Author(s):  
P. Tessari ◽  
R. Barazzoni ◽  
M. Zanetti ◽  
M. Vettore ◽  
S. Normand ◽  
...  

Whether tracers of different essential amino acids yield the same estimates of body protein turnover is still uncertain. Therefore, we have simultaneously determined leucine (Leu; using [14C]Leu), phenylalanine (Phe; using [13C]Phe), and tyrosine (Tyr; using [2H2]Tyr) rates of appearance (Ra) from proteolysis (PD), as well as Leu and Phe disposal, into protein synthesis (PS) both before and after an anabolic stimulus in healthy volunteers. Protein anabolism was stimulated by insulin plus a branched-chain amino acid-enriched aromatic amino acid-deficient amino acid solution, which increased Leu (from 145 +/- 9 to 266 +/- 10 mumol/l) but decreased Phe (from 57 +/- 2 to 46 +/- 3) and Tyr (from 58.7 +/- 5.5 to 21.0 +/- 2.2) concentrations. Postabsorptive endogenous Leu Ra (2.04 +/- 0.12 mumol.kg-1.min-1), Phe Ra (0.66 +/- 0.03), and Tyr Ra (0.45 +/- 0.06), as well as rates of PS determined with the leucine (1.65 +/- 0.10 mumol.kg-1.min-1) and the phenylalanine tracer (0.57 +/- 0.03), agreed well with the known abundance of these amino acids in body protein(s). After insulin and amino acids, PD was suppressed (P < 0.001) using all tracers. However, although percent suppression of endogenous Leu Ra (-->1.49 +/- 0.10 mumol.kg-1.min-1, 26 +/- 5%) and Phe Ra (-->0.53 +/- 0.02 mumol.kg-1.min-1, -20 +/- 2%) were comparable, endogenous Tyr Ra was suppressed to a larger extent (-->0.23 +/- 0.02 mumol.kg-1.min-1, -46 +/- 3% P = 0.038). PS was stimulated using the Leu (+24 +/- 7%, P < 0.02) but not the Phe (+6 +/- 4%, not significant) data. We conclude that isotopes of different essential amino acid: provide comparable estimates of PD and PS in the postabsorptive state. However, their responses to an anabolic stimulus may differ, possibly depending on exogenous amino acid availability and/or the resulting plasma levels.


1994 ◽  
Vol 72 (8) ◽  
pp. 841-848 ◽  
Author(s):  
G. Harvey Anderson ◽  
Shuqin Luo ◽  
Leonidas Trigazis ◽  
Greta Kubis ◽  
Edmund T. S. Li

This study examined the effects of selected groups of essential amino acids (EAAs), given by gavage, on short-term food and water intake. Amino acid groups were selected on the basis of their common physiologic functions in relation to current hypotheses on the role of amino acids in food intake control, and the quantities given were based on the proportions in 1.5 g of the EAA content of albumin. The complete EAA mixture (1.5 g) suppressed food intake by an average of 60 and 37% during the 1st and 2nd h of feeding, respectively, but had no influence on feeding in the subsequent 12 h. Total daily (14 h) intake was decreased by 9%. With the exception of the aromatic amino acid (Phe + Tyr + Trp, 0.34 g) group, all groups significantly decreased food intake by a comparable magnitude (32%) during the 1st h. In this time period, rats given the EAAs, Arg + Met + Val (0.38 g), and Arg + His + Lys (0.44 g) mixtures increased their water intake, whereas intake by rats given the Phe + Tyr + Trp + Thr (0.46 g) and Ile + Leu + Val (0.45 g) mixtures was unchanged. Thus, the food intake suppression caused by EAAs was not accounted for by an equal effect of its component amino acid groups. As well, food intake suppression by amino acid groups was not explained by increased water consumption, nor was it simply related to the quantity of nitrogen provided by the treatment.Key words: food intake, water intake, essential amino acids.


Nutrients ◽  
2019 ◽  
Vol 11 (6) ◽  
pp. 1360 ◽  
Author(s):  
Il-Young Kim ◽  
Sanghee Park ◽  
Ellen T. H. C. Smeets ◽  
Scott Schutzler ◽  
Gohar Azhar ◽  
...  

Heart failure in older individuals is normally associated with a high body mass index and relatively low lean body mass due to, in part, a resistance to the normal anabolic effect of dietary protein. In this study we have investigated the hypothesis that consumption of a specially-formulated composition of essential amino acids (HiEAAs) can overcome anabolic resistance in individuals with heart failure and stimulate the net gain of body protein to a greater extent than a commercially popular protein-based meal replacement beverage with greater caloric but lower essential amino acid (EAA) content (LoEAA). A randomized cross-over design was used. Protein kinetics were determined using primed continuous infusions of L-(2H5)phenylalanine and L-(2H2)tyrosine in the basal state and for four hours following consumption of either beverage. Both beverages induced positive net protein balance (i.e., anabolic response). However, the anabolic response was more than two times greater with the HiEAA than the LoEAA (p < 0.001), largely through a greater suppression of protein breakdown (p < 0.001). Net protein accretion (g) was also greater in the HiEAA when data were normalized for either amino acid or caloric content (p < 0.001). We conclude that a properly formulated EAA mixture can elicit a greater anabolic response in individuals with heart failure than a protein-based meal replacement. Since heart failure is often associated with obesity, the minimal caloric value of the HiEAA formulation is advantageous.


1992 ◽  
Vol 263 (4) ◽  
pp. E794-E799 ◽  
Author(s):  
P. De Feo ◽  
F. F. Horber ◽  
M. W. Haymond

The present studies were performed to test the hypothesis that the liver, by increasing the synthesis of specific plasma proteins during the absorption of an amino acid meal, may play an important role in the temporary "storage" of ingested essential amino acids and to explore the effects of glucocorticosteroids and recombinant human growth hormone (rhGH) on these processes. The fractional synthetic rates of albumin and fibrinogen were determined using simultaneous infusions of intravenous [1-14C]leucine and intraduodenal [4,5-3H]leucine after 22 h fasting and during absorption of glucose and amino acids in four groups of normal subjects treated for 1 wk with placebo, prednisone (0.8 mg.kg-1.day-1), rhGH (0.1 mg.kg-1.day-1), or combined treatment. When compared with the fasted state and independent of the route of tracer delivery and hormonal treatment, albumin, but not fibrinogen, synthesis increased (P < 0.0001) during absorption of a mixed glucose amino acid meal in all groups. This increase in albumin synthesis accounted for 28% of the increase in whole body protein synthesis associated with feeding and for 24, 22, and 14% in the prednisone, rhGH, and combined treatment groups, respectively. These data suggest that the stimulation of albumin synthesis observed during feeding prevents irreversible oxidative losses of a significant fraction of ingested essential amino acids and may serve as a vehicle to capture excess dietary amino acids and transport them to peripheral tissues to sustain local protein synthesis.


1996 ◽  
Vol 75 (2) ◽  
pp. 217-235 ◽  
Author(s):  
G. E. Lobley ◽  
A. Connell ◽  
D. K. Revell ◽  
B. J. Bequette ◽  
D. S. Brown ◽  
...  

AbstractThe response in whole-body and splanchnic tissue mass and isotope amino acid transfers in both plasma and blood has been studied in sheep offered 800 g lucerne (Medicago sutiva) pellets/d. Amino acid mass transfers were quantified over a 4 h period,by arterio-venous procedures, across the portal-drained viscera (PDV) and liver on day 5 of an intravenous infusion of either vehicle or the methylated products, choline (0.5 g/d) plus creatine (10 g/d). Isotopic movements were monitored over the same period during a 10 h infusion of a mixture of U-13C-labelled amino acids obtained from hydrolysis of labelled algal cells. Sixteen amino acids were monitored by gas chromatography-mass spectrometry, with thirteen of these analysed within a single chromatographic analysis. Except for methionine, which is discussed in a previous paper, no significant effects of choline plus creatine infusion were observed on any of the variables reported. Whole-body protein irreversible-loss rates ranged from 158 to 245 g/d for the essential amino acids, based on the relative enrichments (dilution of the U-13C molecules by those unlabelled) of free amino acids in arterial plasma, and 206-519 g/d, when blood free amino acid relative enrichments were used for the calculations. Closer agreement was obtained between lysine, threonine, phenylalanine and the branched-chain amino acids. Plasma relative enrichments always exceeded those in blood (P < 0.001), possibly due to hydrolysis of peptides or degradation of protein within the erythrocyte or slow equilibration between plasma and the erythrocyte. Net absorbed amino acids across the PDV were carried predominantly in the plasma. Little evidence was obtained of any major and general involvement of the erythrocytes in the transport of free amino acids from the liver. Net isotope movements also supported these findings. Estimates of protein synthesis rates across the PDV tissues from [U-13C] leucine kinetics showed good agreement with previous values obtained with single-labelled leucine. Variable rates were obtained between the essential amino acids, probably due to different intracellular dilutions. Isotope dilution across the liver was small and could be attributed predominantly to uni-directional transfer from extracellular sources into the hepatocytes and this probably dominates the turnover of the intracellular hepatic amino acid pools.


2019 ◽  
Vol 20 (10) ◽  
pp. 2428 ◽  
Author(s):  
Pascal Häfliger ◽  
Roch-Philippe Charles

Chronic proliferation is a major hallmark of tumor cells. Rapidly proliferating cancer cells are highly dependent on nutrients in order to duplicate their cell mass during each cell division. In particular, essential amino acids are indispensable for proliferating cancer cells. Their uptake across the cell membrane is tightly controlled by membrane transporters. Among those, the L-type amino acid transporter LAT1 (SLC7A5) has been repeatedly found overexpressed in a vast variety of cancers. In this review, we summarize the most recent advances in our understanding of the role of LAT1 in cancer and highlight preclinical studies and drug developments underlying the potential of LAT1 as therapeutic target.


1957 ◽  
Vol 191 (2) ◽  
pp. 355-358 ◽  
Author(s):  
Gerald Litwack ◽  
Hans Fisher

Avian liver xanthine dehydrogenase (LXD) has been shown to be sensitive to dietary proteins and amino acids particularly when measured during the first 3 weeks of life. Feeding an adequate diet for the first 7 days of life produces a condition wherein LXD is very resistant to single essential amino acid deficiencies. When an amino acid-deficient regimen is fed directly, without prefeeding an adequate diet, a rapid and marked decrease is seen which is inversely proportional to the amount of available limiting amino acid. This mechanism has also been demonstrated by LXD depletion with low dietary protein and repletion with diets high in protein but limiting in a specific amino acid. In the case of l-threonine deficiency, a dietary level of threonine above that required to saturate a growth response produced a continuous rise in LXD specific activity similar to induction.


Gerontology ◽  
2021 ◽  
pp. 1-11
Author(s):  
Francisco Félix Caballero ◽  
Ellen A. Struijk ◽  
Antonio Buño ◽  
Verónica Vega-Cabello ◽  
Fernando Rodríguez-Artalejo ◽  
...  

<b><i>Introduction:</i></b> Amino acids are key elements in the regulation of the aging process which entails a progressive loss of muscle mass. The health effects of plasma amino acids can be influenced by dietary intake. This study assessed the prospective association between amino acid species and impaired lower-extremity function (ILEF) in older adults, exploring the role of diet on this association. <b><i>Methods:</i></b> This is a case-control design comprising 43 incident cases of ILEF and 85 age- and sex-matched controls. Plasma concentrations of 20 amino acid species were measured at baseline using liquid chromatography-tandem mass spectrometry, and incident cases of ILEF were measured after 2 years by means of the Short Physical Performance Battery. Conditional logistic regression models were used to assess longitudinal relationships. <b><i>Results:</i></b> After adjusting for potential confounders, higher levels of tryptophan were associated with a decreased 2-year risk of ILEF (OR per 1-SD increase = 0.64, 95% CI = [0.42, 0.97]), while glutamine and total essential amino acids were linked to higher ILEF risk (OR = 1.57, 95% CI = [1.01, 2.45]; OR = 1.89, 95% CI = [1.18, 3.03], respectively). Those with a lower adherence to a Mediterranean diet, a higher BMI, a higher consumption of red meat, and a lower consumption of nuts and legumes had an increased risk of ILEF associated with higher levels of essential amino acids. <b><i>Discussion/Conclusion:</i></b> Some amino acid species could serve as risk markers for physical function decline in older adults, and healthy diet might attenuate the excess risk of ILEF linked to essential amino acids.


Sign in / Sign up

Export Citation Format

Share Document