Effect of Ball-Milling Time on the Microstructure and Mechanical Properties of Submicron Ti(C,N)-Based Cermets

2013 ◽  
Vol 589-590 ◽  
pp. 584-589
Author(s):  
Hui Jun Zhou ◽  
Chuan Zhen Huang ◽  
Bin Zou ◽  
Han Lian Liu ◽  
Hong Tao Zhu ◽  
...  

In this study, titanium carbonitride (Ti(C,N)) based cermets were prepared by submicron particles, sintered in a vacuum and hot-pressing furnace. And the effect of different ball-milling time (36 h, 48 h, 60 h and 72 h, respectively, mostly aimed for mixing) on the mechanical properties of Ti(C,N)-based cermets, including transverse rupture strength (TRS), Vickers hardness (HV20), fracture toughness (KIC) and microstructure were investigated. The results showed that the TRS, hardness and fracture toughness were all improved with an increase in ball-milling time (not more than 60 h). Scanning electron microscopy (SEM) investigations on the microstructure of cermets with different ball-milling time revealed that the compound powders were not very well-distributed as a whole and there were coarse hard phase grains, but the microstructure was very homogeneous in parts, and the microstructure of cermets with a ball-milling time of 60 h is relatively more homogeneous. So a refinement to Ti(C,N) raw particles is needed in later studies.

2015 ◽  
Vol 830-831 ◽  
pp. 429-432 ◽  
Author(s):  
Udaya ◽  
Peter Fernandes

The paper illustrates Carbon nanotubes reinforced pure Al (CNT/Al) composites and fly ash reinforced pure Al (FA/Al) composites produced by ball-milling and sintering. Microstructures of the fabricated composite were examined and the mechanical properties of the composites were tested and analysed. It was indicated that the CNTs and fly ash were uniformly dispersed into the Al matrix as ball-milling time increased with increase in hardness.


2012 ◽  
Vol 625 ◽  
pp. 304-307 ◽  
Author(s):  
Hai Zhou Yu ◽  
Wen Jun Liu ◽  
Lian Ying ◽  
Min You

Four series of cermets with the SiC whisker content between 0 and 1.0 wt.% were prepared by vacuum sintering. The transverse rupture strength (TRS), hardness (HRA) and fracture toughness (KIC) were also measured. The SiC whiskeraddition was located at the grain boundaries, which prevented grain boundary migration and restrained the grain growth. However, an increasing SiC whisker content decreased the wettability of the binder on the Mo2FeB2 hard phase. The highest TRS and fracture toughness was found for the cermets with 0.5 wt.% SiC whisker addition, whereas the cermets without SiC whisker addition exhibited the maximum hardness.


2020 ◽  
Vol 837 ◽  
pp. 139-145
Author(s):  
Ai Jun Liu ◽  
Gang Li ◽  
Ning Liu ◽  
Ke Bei Chen ◽  
Hai Dong Yang

Effect of Ti (C,N) based cermets granule on the microstructure, mechanical properties, sintering and fracture behavior of Ti (C,N) based cermets was investigated. Results show that the Ti (C,N) based cermets granules distribute in the matrix homogeneously. A nanoindentation study was performed on hard phase and binder phase in the matrix and granule. With the increase of granules content, sintering properties is worse. With the increase of granules content, transverse rupture strength (TRS) and relative density decrease gradually, while the hardness has an opposite trend. The fracture toughness increases firstly with increasing granule, and then decreases with the further increase of granules. Higher fracture toughness of the cermets is mainly owing to the crack branch and higher fracture energy of coarse granule.


Materials ◽  
2019 ◽  
Vol 12 (12) ◽  
pp. 1926 ◽  
Author(s):  
Lei Zhang ◽  
Zhifu Huang ◽  
Yangzhen Liu ◽  
Yupeng Shen ◽  
Kemin Li ◽  
...  

Mo2NiB2-Ni cermets have been extensively investigated due to their outstanding properties. However, studies have not systematically examined the effect of the powder milling process on the cermets. In this study, Mo, Ni, and B raw powders were subjected to mechanical ball milling from 1 h to 15 h. XRD patterns of the milled powders confirmed that a new phase was not observed at milling times of 1 h to 15 h. With the increase in the mechanical ball milling time from 1 h to 11 h, raw powders were crushed to small fragments, in addition to a more uniform distribution, and with the increase in the mechanical ball milling time to greater than 11 h, milled powders changed slightly. Mo2NiB2-Ni cermets were fabricated by reaction boronizing sintering using the milled powders at different ball milling times. The milling time significantly affected the microstructure and mechanical properties of Mo2NiB2-Ni cermets. Moreover, the Mo2NiB2 cermet powder subjected to a milling time of 11 h exhibited the finest crystal size and the maximum volume fraction of the Mo2NiB2 hard phase. Furthermore, the cermets with a milling time of 11 h exhibited a maximum hardness and bending strength of 87.6 HRA and 1367.3 MPa, respectively.


Materials ◽  
2020 ◽  
Vol 13 (16) ◽  
pp. 3483
Author(s):  
Shu Mei Lou ◽  
Chuan Dong Qu ◽  
Guang Xin Guo ◽  
Ling Wei Ran ◽  
Yong Qiang Liu ◽  
...  

Aluminum composites reinforced by graphene nanoplates(GNP) with a mass fraction of 0.5% (0.5 wt.% GNP/Al) were fabricated using cold pressing and hot pressing. An orthogonal test was used to optimize the fabrication parameters. Ball milling time, ball milling speed, and ultrasonic time have the largest influence on the uniformity of the graphene in the composites. Afterwards, the microstructure, interfacial properties, and fracture morphology of the composites obtained with different parameters were further analyzed. The results show that ball milling time and ball milling speed have obvious influences on the mechanical properties of the composite. In this paper, when the ball milling speed is 300 r/min and the ball milling time is 6 h, the dispersion uniformity of graphene in the 0.5 wt.% GNP/Al composite is the best, the agglomeration is the lowest, and the mechanical properties of the composites are the best, among which the tensile strength is 156.8 MPa, 56.6% higher than that of pure aluminum fabricated by the same process (100.1 MPa), and the elongation is 19.9%, 39.8% lower than that of pure aluminum (33.1%).


2012 ◽  
Vol 531-532 ◽  
pp. 437-441 ◽  
Author(s):  
Qi He ◽  
Tao Liu ◽  
Jian Liang Xie

Fe-Ni-Cr alloy powders with the different components were prepared by Mechanical Alloying (MA). The phase structure, grain size, micro-strain and lattice distortion were determined with X-ray diffraction. The morphology and particle size of the powders were observed and analyzed using a field emission scanning electron microscopy. The results showed that the Fe-Ni-Cr nanocrystalline powders could be obtained by MA. The ball milling time could be reduced with increasing amount of Cr, resulting the formation of Fe-Ni-Cr powders. With the increasing amount of Cr, the speed of Ni diffusion to Fe lattice approaching saturation became more rapid. The particle size got smaller as the ball milling went further; the extent of micro-strain and distortion of lattice intensified; the solid solubility of Ni and Cr in Fe was increased. Finally the super-saturated solid solution of Fe was obtained.


2017 ◽  
Vol 726 ◽  
pp. 292-296 ◽  
Author(s):  
Peng Wu ◽  
Shao Cun Liu ◽  
Xiu Rong Jiang

The microstructures of the prepared Ti(C, N)-based cermets with various ratios of Co to Ni+Co were studied using X-ray diffractometry (XRD) and scanning electron microscopy (SEM). Mechanical properties such as transverse rupture strength (TRS), fracture toughness (K1C) and hardness (HRA) were also measured. The results showed that when Ni was partly replaced by Co, the core size of hard particle and the thickness of rim phase changed. With the increasing of the ratio of Co to Ni+Co, the porosity of the cermets increased gradually, the fracture toughness of the cermets decreased gradually, the transverse rupture strength increased firstly and then decreased, the hardness changed slightly。When the ratio of Co to Ni+Co was 0.2, the cermets had better transverse rupture strength (TRS), which was characterized by fine grains and the moderate thickness of rim phase in the binder.


2018 ◽  
Vol 138 ◽  
pp. 289-295 ◽  
Author(s):  
Chao Yang ◽  
Tao Wei ◽  
Ondrej Muránsky ◽  
David Carr ◽  
Hefei Huang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document