RIPK1 and RIPK3 - emerging targets in cancer?

2018 ◽  
Vol 6 (1) ◽  
Author(s):  
Kerem Gurol ◽  
Suraj Shah ◽  
Alexei Degterev

RIPK1 and RIPK3 are homologous Ser/Thr kinases, which act in concert within the necrosome complexes to initiate a sub-type of regulated necrosis, termed necroptosis. Necroptosis has gradually emerged as a highly clinically relevant form of necrosis, which can be targeted therapeutically. Besides necroptosis, RIPK1 and RIPK3 have been implicated in other pathophysiologically-relevant responses, including regulation of apoptosis and inflammation. More recently, it became evident that RIPK1/RIPK3 pathways may be systematically altered in cancers. Status of these pathways may provide a prognostic value, and therapeutic modulation of RIPK1/RIPK3 signaling may represent a new strategy against various forms of human cancer.

Author(s):  
Kerem Gurol ◽  
Suraj Shah ◽  
Alexei Degterev

Abstract: RIPK1 and RIPK3 are homologous Ser/Thr kinases, which act in concert within the necrosome complexes to initiate a sub-type of regulated necrosis, termed necroptosis. Necroptosis has gradually emerged as a highly clinically relevant form of necrosis, which can be targeted therapeutically. Besides necroptosis, RIPK1 and RIPK3 have been implicated in other pathophysiologically-relevant responses, including regulation of apoptosis and inflammation. More recently, it became evident that RIPK1/RIPK3 pathways may be systematically altered in cancers. Status of these pathways may provide a prognostic value, and therapeutic modulation of RIPK1/RIPK3 signaling may represent a new strategy against various forms of human cancer.  


INDIAN DRUGS ◽  
2014 ◽  
Vol 51 (06) ◽  
pp. 5-15
Author(s):  
S.S Mahajan ◽  
◽  
A Chavan

Histone deacetylases (HDACs) are critical in regulating gene expression and transcription. They also play a fundamental role in regulating cellular activities such as cell proliferation, survival and differentiation. Inhibition of histone deacetylases has generated many fascinating results including a new strategy in human cancer therapy. Suberoylanilide hydroxamic acid (SAHA) and romidepsin are the two drugs approved by US FDA for the treatment of cutaneous T-cell lymphoma. The HDAC inhibitors (HDACIs) like trichostatin A and SAHA are also emerging as new promising drugs for various conditions like rheumatoid arthritis, colitis, systemic lupus erythematosus and CNS disorders. This review, along with chemical classification of HDACIs, emphasizes on the therapeutic potential of various HDACIs against different diseases.


2016 ◽  
Vol 310 (9) ◽  
pp. G629-G644 ◽  
Author(s):  
Roxane Khoogar ◽  
Byung-Chang Kim ◽  
Jay Morris ◽  
Michael J. Wargovich

The last decade has witnessed remarkable progress in the utilization of natural products for the prevention and treatment of human cancer. Many agents now in the pipeline for clinical trial testing have evolved from our understanding of how human nutritional patterns account for widespread differences in cancer risk. In this review, we have focused on many of these promising agents arguing that they may provide a new strategy for cancer control: natural products once thought to be only preventive in their mode of action now are being explored for efficacy in tandem with cancer therapeutics. Natural products may reduce off-target toxicity of therapeutics while making cancers more amenable to therapy. On the horizon is the use of certain natural products, in their own right, as mitigants of late-stage cancer, a new frontier for small-molecule natural product drug discovery.


Tumor Biology ◽  
2017 ◽  
Vol 39 (2) ◽  
pp. 101042831769432 ◽  
Author(s):  
Christophe Deben ◽  
Jolien Van den Bossche ◽  
Nele Van Der Steen ◽  
Filip Lardon ◽  
An Wouters ◽  
...  

The TP53 gene remains the most frequently altered gene in human cancer, of which variants are associated with cancer risk, therapy resistance, and poor prognosis in several tumor types. To determine the true prognostic value of TP53 variants in non–small cell lung cancer, this study conducted further research, particularly focusing on subtype and tumor stage. Therefore, we determined the TP53 status of 97 non–small cell lung cancer adenocarcinoma patients using next generation deep sequencing technology and defined the prognostic value of frequently occurring single nucleotide polymorphisms and mutations in the TP53 gene. Inactivating TP53 mutations acted as a predictor for both worse overall and progression-free survival in stage II–IV patients and patients treated with DNA-damaging (neo)adjuvant therapy. In stage I tumors, the Pro-allele of the TP53 R72P polymorphism acted as a predictor for worse overall survival. In addition, we detected the rare R213R (rs1800372, minor allele frequency: 0.0054) polymorphism in 7.2% of the patients and are the first to show the significant association with TP53 mutations in non–small cell lung cancer adenocarcinoma patients (p = 0.003). In conclusion, Our findings show an important role for TP53 variants as negative predictors for the outcome of non–small cell lung cancer adenocarcinoma patients, especially for TP53 inactivating mutations in advanced stage tumors treated with DNA-damaging agents, and provide the first evidence of the R213R G-allele as possible risk factor for non–small cell lung cancer.


2018 ◽  
Vol 9 (20) ◽  
pp. 3690-3698 ◽  
Author(s):  
Ying Wu ◽  
Ming Ding ◽  
Shuzhen Wei ◽  
Ting Wu ◽  
Rongrong Xu ◽  
...  

2022 ◽  
Vol 11 ◽  
Author(s):  
Chenming Zhong ◽  
Yiyao Dong ◽  
Qiudan Zhang ◽  
Chunhui Yuan ◽  
Shiwei Duan

miR-1301 is a newly discovered miRNA, which is abnormally expressed in 14 types of tumors. miR-1301 inhibits 23 target genes, forms a ceRNA network with 2 circRNAs and 8 lncRNAs, and participates in 6 signaling pathways, thereby affecting tumor cell proliferation, invasion, metastasis, apoptosis, angiogenesis, etc. Abnormal expression of miR-1301 is often associated with poor prognosis of cancer patients. In addition, miR-1301 is related to the anti-tumor effect of epirubicin on osteosarcoma and imatinib on chronic myeloid leukemia(CML) and can enhance the cisplatin sensitivity of ovarian cancer. This work systematically summarizes the abnormal expression and prognostic value of miR-1301 in a variety of cancers, depicts the miR-1301-related signaling pathways and ceRNA network, and provides potential clues for future miR-1301 research.


Author(s):  
Kexun Yu ◽  
Weijie Yuan ◽  
Changhao Huang ◽  
Lei Xiao ◽  
Runsha Xiao ◽  
...  

Background: The long non-coding RNA SNHG7 is upregulated in many types of cancer and plays a role as an oncogene. However, its overall predictive ability in human cancer prognosis has not been assessed using existing databases. Therefore, further study of its prognostic value and clinical significance in human malignancies is warranted. Methods: We systematically collected relevant literature from multiple electronic document databases about the relationship between SNHG7 expression level and prognosis in patients with solid cancers. We further screened them for eligibility. Pooled hazard ratios (HRs) with 95% confidence intervals (CIs) were used to assess the prognostic value. Odds ratios (ORs) and their 95% CIs were collected to evaluate the relationship between the expression of SNHG7 and clinicopathological features, including lymph node metastasis (LNM), tumour size, tumour node metastasis (TNM) stage and histological grade. Results: Fourteen original studies involving 971 patients were enrolled strictly following the inclusion and exclusion criteria. The meta-analysis showed that SNHG7 expression was significantly correlated with poor overall survival (HR = 1.93, 95% CI: 1.64–2.26, p<0.001) in human cancer patients. In addition, the pooled OR indicated that overexpression of SNHG7 was associated with earlier LNM (OR = 1.83, 95% CI: 1.44–2.32; P <0.001), and advanced TNM stage (OR = 1.82, 95% CI: 1.44–2.30; P <0.001).Meanwhile, there was no significant heterogeneity between the selected studies, proving the reliability of the meta-analysis results. Conclusions: High SNHG7 expression may predict poor oncological outcomes in patients with multiple human cancers, which could be a novel prognostic biomarker of unfulfilled clinicopathological features. However, further high-quality studies are needed to verify and strengthen the clinical value of SNHG7 in different types of cancer.


2019 ◽  
Vol 2019 ◽  
pp. 1-9 ◽  
Author(s):  
Wenbiao Liao ◽  
Tao Ye ◽  
Haoran Liu

Background. Inducible nitric oxide synthase (iNOS) is confirmed to regulate the production of nitric oxide (NO) when cells are exposed to external stimulus. Recent publications revealed that overexpression of iNOS predicted poor clinical outcomes for patients with malignant cancers, e.g., gastric, bladder, and colorectal cancers; however, several studies reported no obvious relationship between iNOS expression and prognosis of solid tumors. The aim of our study was to investigate the pooled effect of the prognostic value of iNOS expression.Materials and Methods. We performed a systematic search of PubMed, Web of Science, and Embase databases up to January 15, 2019. The concerned outcomes of interest included overall survival (OS), cancer-special survival (CSS), and recurrence-free survival (RFS).Results. Fourteen studies with 1,758 patients were included in this meta-analysis, and we reached the conclusion that increased iNOS expression was significantly associated with worse OS (HR: 1.89, 95% CI: 1.57 - 2.28, p ≤ 0.001), worse CSS (HR: 3.13, 95% CI: 1.88 - 5.20, p ≤ 0.001), and worse RFS (HR: 2.16, 95% CI: 1.29 - 3.62, p = 0.003) in solid tumors. Furthermore, the subgroup analysis identified the significant relationship of high iNOS expression with poor OS in gastric cancer. No obvious publication bias was detected by Begg’s tests.Conclusion. In summary, the results drawn in our meta-analysis demonstrated that elevated expression of iNOS had a significant association with poor survival in human cancer. iNOS might serve as a promising predictive biomarker of prognosis in cancer patients, and well-designed prospective studies are further needed to substantiate the prognostic value of iNOS.


2021 ◽  
Vol 22 (4) ◽  
pp. 1631
Author(s):  
Hashem O. Alsaab ◽  
Alanoud S. Al-Hibs ◽  
Rami Alzhrani ◽  
Khawlah K. Alrabighi ◽  
Aljawharah Alqathama ◽  
...  

Angiogenesis is one of the hallmarks of cancer. Several studies have shown that vascular endothelium growth factor (VEGF) plays a leading role in angiogenesis progression. Antiangiogenic medication has gained substantial recognition and is commonly administered in many forms of human cancer, leading to a rising interest in cancer therapy. However, this treatment method can lead to a deteriorating outcome of resistance, invasion, distant metastasis, and overall survival relative to its cytotoxicity. Furthermore, there are significant obstacles in tracking the efficacy of antiangiogenic treatments by incorporating positive biomarkers into clinical settings. These shortcomings underline the essential need to identify additional angiogenic inhibitors that target numerous angiogenic factors or to develop a new method for drug delivery of current inhibitors. The great benefits of nanoparticles are their potential, based on their specific properties, to be effective mechanisms that concentrate on the biological system and control various important functions. Among various therapeutic approaches, nanotechnology has emerged as a new strategy for treating different cancer types. This article attempts to demonstrate the huge potential for targeted nanoparticles and their molecular imaging applications. Notably, several nanoparticles have been developed and engineered to demonstrate antiangiogenic features. This nanomedicine could effectively treat a number of cancers using antiangiogenic therapies as an alternative approach. We also discuss the latest antiangiogenic and nanotherapeutic strategies and highlight tumor vessels and their microenvironments.


Sign in / Sign up

Export Citation Format

Share Document