NEW AND EMERGING HDAC INHIBITORS FOR THE TREATMENT OF DISEASES

INDIAN DRUGS ◽  
2014 ◽  
Vol 51 (06) ◽  
pp. 5-15
Author(s):  
S.S Mahajan ◽  
◽  
A Chavan

Histone deacetylases (HDACs) are critical in regulating gene expression and transcription. They also play a fundamental role in regulating cellular activities such as cell proliferation, survival and differentiation. Inhibition of histone deacetylases has generated many fascinating results including a new strategy in human cancer therapy. Suberoylanilide hydroxamic acid (SAHA) and romidepsin are the two drugs approved by US FDA for the treatment of cutaneous T-cell lymphoma. The HDAC inhibitors (HDACIs) like trichostatin A and SAHA are also emerging as new promising drugs for various conditions like rheumatoid arthritis, colitis, systemic lupus erythematosus and CNS disorders. This review, along with chemical classification of HDACIs, emphasizes on the therapeutic potential of various HDACIs against different diseases.

2015 ◽  
Vol 2015 ◽  
pp. 1-11 ◽  
Author(s):  
Sorabh Sharma ◽  
Rajeev Taliyan

The worldwide prevalence of movement disorders is increasing day by day. Parkinson’s disease (PD) is the most common movement disorder. In general, the clinical manifestations of PD result from dysfunction of the basal ganglia. Although the exact underlying mechanisms leading to neural cell death in this disease remains unknown, the genetic causes are often established. Indeed, it is becoming increasingly evident that chromatin acetylation status can be impaired during the neurological disease conditions. The acetylation and deacetylation of histone proteins are carried out by opposing actions of histone acetyltransferases (HATs) and histone deacetylases (HDACs), respectively. In the recent past, studies with HDAC inhibitors result in beneficial effects in bothin vivoandin vitromodels of PD. Various clinical trials have also been initiated to investigate the possible therapeutic potential of HDAC inhibitors in patients suffering from PD. The possible mechanisms assigned for these neuroprotective actions of HDAC inhibitors involve transcriptional activation of neuronal survival genes and maintenance of histone acetylation homeostasis, both of which have been shown to be dysregulated in PD. In this review, the authors have discussed the putative role of HDAC inhibitors in PD and associated abnormalities and suggest new directions for future research in PD.


2016 ◽  
Vol 21 (6) ◽  
pp. 643-652 ◽  
Author(s):  
Chia-Wen Hsu ◽  
David Shou ◽  
Ruili Huang ◽  
Thai Khuc ◽  
Sheng Dai ◽  
...  

Histone deacetylases (HDACs) are a class of epigenetic enzymes that regulate gene expression by histone deacetylation. Altered HDAC function has been linked to cancer and neurodegenerative diseases, making HDACs popular therapeutic targets. In this study, we describe a screening approach for identification of compounds that inhibit endogenous class I and II HDACs. A homogeneous, luminogenic HDAC I/II assay was optimized in a 1536-well plate format in several human cancer cell lines, including HCT116 and human neural stem cells. The assay confirmed 37 known HDAC inhibitors from two libraries of known epigenetics-active compounds. Using the assay, we identified a group of potential HDAC inhibitors by screening the National Center for Advancing Translational Sciences (NCATS) Pharmaceutical Collection of 2527 small-molecule drugs. The selected compounds showed similar HDAC I/II inhibitory potency and efficacy values in both HCT116 and neural stem cells. Several previously unidentified HDAC inhibitors were further evaluated and profiled for their selectivity against a panel of 10 HDAC I/II isoforms using fluorogenic HDAC biochemical assays. In summary, our results show that several novel HDAC inhibitors, including nafamostat and piceatannol, have been identified using the HDAC I/II cell-based assay, and multiple cell types have been validated for high-throughput screening of large chemical libraries.


2007 ◽  
Vol 85 (6) ◽  
pp. 751-758 ◽  
Author(s):  
Anoushe Sekhavat ◽  
Jian-Min Sun ◽  
James R. Davie

Histone deacetylases (HDACs) play a pivotal role in gene expression through their involvement in chromatin remodeling. The abnormal targeting or retention of HDACs to DNA regulatory regions is observed in many cancers, and hence HDAC inhibitors are being tested as promising anti-tumor agents. The results of previous kinetic studies, characterizing trichostatin A (TSA), as well as butyrate, as HDAC noncompetitive inhibitors, conflict with crystallographic and homology modeling data suggesting that TSA should act as a competitive inhibitor. Our results demonstrate that each of the HDAC inhibitors TSA and butyrate inhibits HDAC activity in a competitive fashion. Co-immunoprecipitation studies show that the inhibition of HDAC1 and HDAC2 activity by TSA does not disturb the extensive level of their association in the human breast cancer cell line MCF-7. Moreover, the inhibition of HDAC activity by TSA does not interfere with the interaction of HDAC1 and HDAC2 with Sin3A, a core component of the Sin3 complex. Thus, repressor complexes such as Sin3, appear to be stable in the presence of TSA. The association of HDAC2 with transcription factor Sp1 is also not affected by TSA.


2020 ◽  
Vol 5 (2) ◽  
pp. 57-62
Author(s):  
Masumeh Sanaei ◽  
Fraidoon Kavoosi

Objective: DNA methylation, the covalent addition of a methyl group to cytosine, and histone modification play an important role in the establishment and maintenance of the program of gene expression. The balance of histone acetylation is determined by the activities of two groups of enzymes including histone acetyltransferases (HATs) and histone deacetylases (HDACs). Histone deacetylation is generally associated with silencing gene expression resulting in several solid tumors. HDAC inhibitors (HDACIs) are the new class of potential anticancer compounds for the treatment of the solid and hematological cancers. The current study was designed to evaluate the effect of trichostatin A (TSA) on histone deacetylases 1, 2 and 3, p21Cip1/Waf1/Sdi1 (p21), p27Kip1 (p27), and p57Kip2 (p57) gene expression in breast cancer SK-BR-3 cell line. Materials and Methods: The breast cancer SK-BR-3 line was treated with TSA. To determine cell viability, cell apoptosis, and the relative expression level of the genes, MTT assay, cell apoptosis assay, and qRT-PCR were done respectively. Results: TSA significantly inhibited cell growth, and induced apoptosis. Furthermore, this compound increased p21, p27, and p57 and decreased histone deacetylases 1, 2 and 3 gene expression significantly. Conclusion: The TSA can reactivate the p21, p27, and p57 through down-regulation of histone deacetylases 1, 2 and 3 gene expression.


PLoS ONE ◽  
2021 ◽  
Vol 16 (4) ◽  
pp. e0250267
Author(s):  
Yanming Li ◽  
Xiaofei Weng ◽  
Pingping Wang ◽  
Zezhao He ◽  
Siya Cheng ◽  
...  

4-phenylbutyrate (4-PBA), a terminal aromatic substituted fatty acid, is used widely to specifically attenuate endoplasmic reticulum (ER) stress and inhibit histone deacetylases (HDACs). In this study, we investigated the effect of 4-PBA on cardiac differentiation of mouse embryonic stem (ES) cells. Herein, we found that 4-PBA regulated cardiac differentiation in a stage-specific manner just like trichostatin A (TSA), a well-known HDAC inhibitor. 4-PBA and TSA favored the early-stage differentiation, but inhibited the late-stage cardiac differentiation via acetylation. Mechanistic studies suggested that HDACs exhibited a temporal expression profiling during cardiomyogenesis. Hdac1 expression underwent a decrease at the early stage, while was upregulated at the late stage of cardiac induction. During the early stage of cardiac differentiation, acetylation favored the induction of Isl1 and Nkx2.5, two transcription factors of cardiac progenitors. During the late stage, histone acetylation induced by 4-PBA or TSA interrupted the gene silence of Oct4, a key determinant of self-renewal and pluripotency. Thereby, 4-PBA and TSA at the late stage hindered the exit from pluripotency, and attenuated the expression of cardiac-specific contractile proteins. Overexpression of HDAC1 and p300 exerted different effects at the distinct stages of cardiac induction. Collectively, our study shows that timely manipulation of HDACs exhibits distinct effects on cardiac differentiation. And the context-dependent effects of HDAC inhibitors depend on cell differentiation states marked by the temporal expression of pluripotency-associated genes.


2004 ◽  
Vol 186 (8) ◽  
pp. 2328-2339 ◽  
Author(s):  
Christian Hildmann ◽  
Milena Ninkovic ◽  
Rüdiger Dietrich ◽  
Dennis Wegener ◽  
Daniel Riester ◽  
...  

ABSTRACT The full-length gene encoding the histone deacetylase (HDAC)-like amidohydrolase (HDAH) from Bordetella or Alcaligenes (Bordetella/Alcaligenes) strain FB188 (DSM 11172) was cloned using degenerate primer PCR combined with inverse-PCR techniques and ultimately expressed in Escherichia coli. The expressed enzyme was biochemically characterized and found to be similar to the native enzyme for all properties examined. Nucleotide sequence analysis revealed an open reading frame of 1,110 bp which encodes a polypeptide with a theoretical molecular mass of 39 kDa. Interestingly, peptide sequencing disclosed that the N-terminal methionine is lacking in the mature wild-type enzyme, presumably due to the action of methionyl aminopeptidase. Sequence database searches suggest that the new amidohydrolase belongs to the HDAC superfamily, with the closest homologs being found in the subfamily assigned acetylpolyamine amidohydrolases (APAH). The APAH subfamily comprises enzymes or putative enzymes from such diverse microorganisms as Pseudomonas aeruginosa, Archaeoglobus fulgidus, and the actinomycete Mycoplana ramosa (formerly M. bullata). The FB188 HDAH, however, is only moderately active in catalyzing the deacetylation of acetylpolyamines. In fact, FB188 HDAH exhibits significant activity in standard HDAC assays and is inhibited by known HDAC inhibitors such as trichostatin A and suberoylanilide hydroxamic acid (SAHA). Several lines of evidence indicate that the FB188 HDAH is very similar to class 1 and 2 HDACs and contains a Zn2+ ion in the active site which contributes significantly to catalytic activity. Initial biotechnological applications demonstrated the extensive substrate spectrum and broad optimum pH range to be excellent criteria for using the new HDAH from Bordetella/Alcaligenes strain FB188 as a biocatalyst in technical biotransformations, e.g., within the scope of human immunodeficiency virus reverse transcriptase inhibitor synthesis.


2006 ◽  
Vol 13 (4) ◽  
pp. 1237-1250 ◽  
Author(s):  
Viola Baradari ◽  
Alexander Huether ◽  
Michael Höpfner ◽  
Detlef Schuppan ◽  
Hans Scherübl

Treatment options of advanced neuroendocrine tumors (NETs) are unsatisfactory. Hence, innovative therapeutic approaches are urgently needed. Inhibition of histone deacetylases (HDACs) is a promising new approach in cancer therapy. While several HDAC inhibitors have already entered clinical trials, the effect of HDAC inhibition on NET has not been investigated. Therefore, we evaluated the antineoplastic effects of three different HDAC inhibitors, trichostatin A (TSA), sodium butyrate (NaB), and MS-275, on growth and apoptosis of the gastrointestinal NET cell lines CM and BON. We could demonstrate that HDAC inhibition dose-dependently inhibited proliferation of both cell lines with IC50 values varying from the millimolar (NaB) to the micromolar (MS-275) and the nanomolar range (TSA). Moreover, HDAC inhibition potently induced apoptosis, which was accompanied by DNA-fragmentation, an up to 12-fold caspase-3 activation and downregulated Bcl-2 expression. Furthermore, HDAC inhibition resulted in cell cycle arrest at the G1–S-transition, which was associated with the suppression of cyclin D1 expression and induction of p21 and p27 expression. For BON cells, we observed an additional block in the G2/M phase, which was aligned with a downregulation of cyclin B1. In addition, combined treatment with MS-275 and somatostatin or the synthetic somatostatin analog octreotide was evaluated. Neither somatostatin nor its stable analog octreotide augmented the antiproliferative effect of MS-275 in NET cells. To conclude, our data show that HDAC inhibition is a promising new approach in the treatment of NET disease, which should be evaluated in clinical studies.


Oncogene ◽  
2021 ◽  
Author(s):  
Xiaolei Li ◽  
Xiao Su ◽  
Rui Liu ◽  
Yongsha Pan ◽  
Jiankai Fang ◽  
...  

AbstractDespite the widespread use of the blockade of immune checkpoints, for a significant number of cancer patients, these therapies have proven ineffective, presumably due to the immunosuppressive nature of the tumor microenvironment (TME). Critical drivers of immune escape in the TME include tumor-associated macrophages (TAMs) and myeloid-derived suppressor cells (MDSCs), which not only mediate immune suppression, but also facilitate metastatic dissemination and impart resistance to immunotherapies. Thus, strategies that convert them into tumor fighters may offer great therapeutic potential. In this study, we evaluated whether pharmacologic modulation of macrophage phenotype by HDAC inhibitors (HDACi) could produce an anti-tumor effect. We demonstrated that low-dose HDACi trichostatin-A (TSA) markedly reshaped the tumor immune microenvironment by modulating the suppressive activity of infiltrating macrophages and inhibiting the recruitment of MDSCs in various tumors. These actions, in turn, augmented anti-tumor immune responses and further enhanced anti-tumor effects of immunotherapies. HDAC inhibition, however, also upregulated PD-L1, thereby limiting the beneficial therapeutic effects. Indeed, combining low-dose TSA with anti-PD-L1 in this model significantly enhanced the durability of tumor reduction and prolonged survival of tumor-bearing mice, compared with the effect of either treatment alone. These data introduce HDAC inhibition as a potential means to harness the anti-tumor potential of macrophages in cancer therapy.


2021 ◽  
Vol 22 (10) ◽  
pp. 5398
Author(s):  
Hyun-Sun Park ◽  
Jongmin Kim ◽  
Seong Hoon Ahn ◽  
Hong-Yeoul Ryu

Depression is a highly prevalent, disabling, and often chronic illness that places substantial burdens on patients, families, healthcare systems, and the economy. A substantial minority of patients are unresponsive to current therapies, so there is an urgent need to develop more broadly effective, accessible, and tolerable therapies. Pharmacological regulation of histone acetylation level has been investigated as one potential clinical strategy. Histone acetylation status is considered a potential diagnostic biomarker for depression, while inhibitors of histone deacetylases (HDACs) have garnered interest as novel therapeutics. This review describes recent advances in our knowledge of histone acetylation status in depression and the therapeutic potential of HDAC inhibitors.


Sign in / Sign up

Export Citation Format

Share Document