Optimisation of Alkaline Ethanolysis of Biodiesel Yield from Nigerian Coconut Oil using One Variable at a Time (OVAT) Approach

2018 ◽  
Vol 1 (3) ◽  
pp. 166-169
Author(s):  
O.D. Samuel

In this study, coconut (Cocos nucifera) oil has been identified as a feedstock for biodiesel production. The determination ofoptimal feedstocks ratio (of ethanol/coconut oil, v/v. % ratio) was studied. The reaction was executed at different ethanol/coconut oil ratios: 10%, 15% 20%, 25% and 30% while the reaction time (60 min), reaction temperature (700C) and 1.0%NaOH catalyst dosage were kept constant. The result indicated that maximum biodiesel yield (96.09%) was obtained at 20%of ethanol/coconut oil vol./vol.% ratio within transesterification reactions that were kept constant. The fuel characterizationsuch as viscosity (4.32mm2/s), specific gravity (0.887), pour point (-180C), cloud point (-120C) and flash point (1600C) of theproduced biodiesel at the optimized conditioned showed that the suitability of coconut ethyl ester (biodiesel) were within theinternational biodiesel standard.

2011 ◽  
Vol 189-193 ◽  
pp. 3925-3931 ◽  
Author(s):  
Qing Li Yang ◽  
Feng Zhu ◽  
Jie Sun ◽  
Song Qin

Suaeda salsa oil was taken as raw materials to produce biodiesel by ultrasonic-Assisted transesterification. Single factor experiment and the orthogonal experiment combination design were adopted to study the effects of ultrasonic frequency, ultrasonic power,reaction temperature ,reaction time,catalyst dosage and mole ratio of methanol to oil on biodiesel production rate. The order of factors that influence the biodiesel production rate within the experimental range was as follows: catalyst dosage>reaction time>reaction temperature>mole ratio of methanol to oil. The optimal technological parameters should be as follows: ultrasonic frequency 28kHz, ultrasonic power 210W, reaction temperature 65 , reaction time 10min,catalyst dosage 0.3%and mole ratio of methanol to oil 6, and biodiesel production rate is 97.93% under such conditions.


2019 ◽  
Vol 8 (1) ◽  
pp. 11-17
Author(s):  
Rosdanelli Hasibuan ◽  
Fransiska Adventi ◽  
Rahmad Parsaulian Rtg

Soap is a cleanser made by chemical reactions between sodium hydroxide or potassium hydroxide with fatty acids from vegetable oils or animal fats. Soaps can be made by several methods, namely saponification and neutralization methods, in this study carried out by saponification method. In the saponification method there are several problems namely operating conditions which include reaction temperature, stirring speed and stirring time. Therefore, need to do research to determine the best conditions of saponification reaction, namely reaction speed, operating temperature and reaction time using an impeller type multiple pitch blade turbine with research variables reaction temperature 60 oC, 70 oC, and 80 oC, stirring speed 300 rpm,400 rpm and 500 rpm and reaction time of 45minutes, 60 minutes, and 75 minutes. Saponification reaction is carried out by heating coconut oil and inserting 30% NaOH slowly and then stirring with a multiple pitch blade stirrer. The product will be analyzed by testing alkaline levels, moisture content and pH of the soap. The best operating conditions obtained from this study were at a temperature of 70 oC, reaction time of 60 minutes, stirring speed of 400 rpm with a pH value of 9.4 and an alkaline level of 0.073 and a moisture content of 9.8.


2018 ◽  
Vol 2018 ◽  
pp. 1-7
Author(s):  
Fei Chang ◽  
Chen Yan ◽  
Quan Zhou

A new copper-based supramolecular (β-cyclodextrins, β-CD) catalyst was synthesized and used for transesterification of Xanthium sibiricum Patr oil to biodiesel. This catalyst exhibited high activity (88.63% FAME yield) in transesterification under the ratio of methanol-oil: 40 : 1; catalyst dosage: 8 wt.%; reaction temperature: 120°C; and reaction time: 9 h. The XRD, SEM, TEM, XPS, and BET characterization results showed that Cu-β-CD catalyst was amorphous and had clear mesoporous structure (17.2 nm) as compared with the native β-CD. This phenomenon is attributed to the coordination of Cu and β-CD.


2018 ◽  
Vol 8 (1) ◽  
pp. 121-127 ◽  
Author(s):  
Tanzer Eryilmaz

In this study, the methyl ester production process from neutralized waste cooking oils is optimized by using alkali-catalyzed (KOH) single-phase reaction. The optimization process is performed depending on the parameters, such as catalyst concentration, methanol/oil ratio, reaction temperature and reaction time. The optimum methyl ester conversion efficiency was 90.1% at the optimum conditions of 0.7 wt% of potassium hydroxide, 25 wt% methanol/oil ratio, 90 min reaction time and 60°C reaction temperature. After the fuel characteristics of the methyl ester obtained under optimum conditions were determined, the effect on engine performance, CO and NOx emissions of methyl ester was investigated in a diesel engine with a single cylinder and direct injection. When compared to diesel fuel, engine power and torque decreased when using methyl ester, and specific fuel consumption increased. NOx emission increases at a rate of 18.4% on average through use of methyl ester.


2021 ◽  
Vol 25 (4) ◽  
pp. 537-542
Author(s):  
C.A. Odega ◽  
G.T. Anguruwa ◽  
C.O. Fakorede

Biodiesel is a fuel produced from renewable resources; it is a clean alternative fuel, which has drawn the attention of energy researchers for the last two decades due to the disturbing effect of climate change caused by diesel fuel. This paper focuses on showcasing the qualities of biodiesel produced from used vegetable oil and the positive impact on the alarming change in climate today. This paper presents an experimental investigation on production of biodiesel from used vegetable oil (UVO) gotten from a road side bean cake (akara) seller. The oil that was intended to be thrown out was de-odoured and filtered to remove impurities. The filtered oil was then used for biodiesel production and characterized with physical and fuel properties such as density, viscosity, cloud point, refractive index, specific gravity, ash content, moisture content, flash point and cloud point. The results obtained were afterwards compared to ASTM (American Society for Testing and Materials) and EN (Europe’s) international standards. Two biodiesels samples were produced at different temperatures but the same timings. The biodiesel were produced at 700C at 40mins (biodiesel A) and 1000C at 40mins (biodiesel B) with values of specific gravity (0.98 kg/m3; 0.90 kg/m3), density (936kg/m3; 882kg/m3), kinematic viscosity (1.5mm/s2; 5.5 mm/s2), cloud point (150C; 20C), flash point (2600C min; 2000C min), moisture content (0.07%; 0.04%), refractive index (1.4609; 1.4398) and ash point (0.24%; 0.01%) respectively. On comparison, biodiesel A couldn’t match up to the international standards while biodiesel matched up to the standards given.


2014 ◽  
Vol 1008-1009 ◽  
pp. 338-341
Author(s):  
Yu Xiu Zhang ◽  
Cheng Zhi Wang ◽  
Yong Li Zhang ◽  
Zhang Wei Li

CuO/γ-Al2O3 catalyst was used to deal with the waste leachate in CWAO technology of, and the SEM and TEM characterization showed: active component in the surface of the carrier distribution is uniform; In CWAO process, six factors, based on the CODCr removal rate and turbidity removal rate, the biggest impact factor is reaction temperature, and the influence factors of the top three were reaction temperature, catalyst dosage and reaction time. The influence factors of those in the bottom three are influent water pH, oxygen partial pressure, stirring intensity, and three factors of influence on the strength is close. Optimizing operation process, in order: reaction temperature of 200 °C, catalyst dosage of 1.5 g, oxygen partial pressure of 2.0 MPa, stirring intensity 800 rpm, influent water pH of 7.0, the reaction time of 70 min.


2012 ◽  
Vol 581-582 ◽  
pp. 108-111 ◽  
Author(s):  
Sumuntana Anuchatkidjaroen ◽  
Thawatchai Phaechamud

In the tropical countries, virgin coconut oil (VCO) has been abundantly utilized as traditional medicine and cosmetic, but its major problem is temperature sensitive. This oil changes into some wax-like at cool environment. The purpose of this study is to decrease wax deposition of this oil by investigate the effect of surfactants on the physical properties and drug release characteristic. Ibuprofen (IB), which can soluble in VCO, was used as a model drug. Viscosity, pour point, cloud point and polarized light microscope examinations were conducted to characterize the change of VCO physical properties. In vitro drug release experiment was performed using dialysis method at 50 rpm and 37°C in phosphate buffer pH 7.4. The addition of surfactants in VCO increased the efficiency for measuring the viscosity at lower temperature. Result from viscosity measurement indicated that Solutol® HS15 (ST) was the most suitable for choosing as representative of the surfactants. Both pour point and cloud point could not reduce by ST because the crystals size of VCO with and without ST was not different. There was no difference of viscosity of each formula during the release experiments (37°C), therefore the release rate of drug from VCO containing or without ST was not different. These indicated that the surfactants and ibuprofen affected the physical properties but did not affect the release of this investigated VCO.


2016 ◽  
Vol 723 ◽  
pp. 610-615 ◽  
Author(s):  
Natta Pimngern ◽  
Vittaya Punsuvon

Crude coconut oil with high free fatty acid (FFA) content was used as a raw material to produce biodiesel. In this work, the esterification followed by transesterification of crude coconut oil with methanol is studied. The response surface methodology (RSM) with 5-level-3-factor central composite design (CCD) was applied to study the effect of different factors on the FFA content of esterification and the percentage of fatty acid methyl ester (FAME) conversion of transesterification. The FAME conversion was detected by proton magnetic resonance (1H-NMR) spectrometer. As a result, the optimum conditions for esterification were 6:1 of methanol-to-oil molar ratio, 0.75wt% of sulfuric acid (H2SO4) concentration and 90 min of reaction time. The optimum conditions for transesterification were 8.23:1 of methanol-to-oil molar ratio, 0.75wt% of sodium hydroxide (NaOH) concentration and 80 min of reaction time. Quadratic model equations were obtained describing the relationships between dependents and independent variables to minimize the FFA content and maximize the FAME conversion. Fuel properties of the crude coconut oil biodiesel were also examined followed ASTM and EN standards. The results showed that all properties met well with both standards.


2021 ◽  
Vol 25 (7) ◽  
pp. 1179-1185
Author(s):  
O.O. Oniya ◽  
A. Saleh ◽  
F.B. Akande ◽  
D.T. Adeyemi

The objective of this study was to characterize a low cost heterogeneous catalyst from the transesterification of sand apple (Parinari polyandra B.) biodiesel. Sand apple fruits were processed and oil was extracted using solvent extraction method. Raw eggshells were calcined at 800°C for 120 min in the muffle furnace. Surface properties of the raw and calcined eggshell were characterized using Fourier Transformed Infrared Radiation (FTIR) and X-Ray Fluorescence (XRF). Transesterification of the Sand Apple Oil (SASO) with ethanol in the presence of the calcined catalyst to produce ethyl ester and glycerol were optimized using Central Composite Design at different temperatures and time. Reactants for the transesterification process were the raw SASO and anhydrous ethanol. The study shows that raw eggshell was more stable with hydrogen bond form at 2,724 cm-1an while oil yield of 53.13 % was obtained from sand apple kernels. Ethyl ester yield of 90% was obtained from SASO. The results of transesterification shows the maximum biodiesel yield of 90% was obtained at reaction temperature of 65°C and time of 120 min, while the minimum yield of 70% was obtained at temperature of 55°C and time of 60 min; indicating that biodiesel increase with increase in time. Similarly, yield of ethyl ester of SASO also increased when the reaction temperature increased. The percentages of biodiesel yield obtained from SASO transesterification in this study showed that sand apple is promising oil for biodiesel production as compared with other vegetable oil crop obtained in previous studies


Sign in / Sign up

Export Citation Format

Share Document