scholarly journals Design of Wideband Elliptical Ring Monopole Antenna Using Characteristic Mode Analysis

2021 ◽  
Vol 21 (4) ◽  
pp. 299-306
Author(s):  
Bhaskara Rao Perli ◽  
Maheswara Rao Avula

This paper presents the systematic design of an elliptical ring monopole wideband antenna using characteristic mode analysis. The modal analysis is used to analyze the bandwidth and the radiation performance of the radiating patch. The resonance frequencies of three characteristic modes are close to each other with similar modal current distributions and characteristic fields. These three characteristic modes are simultaneously excited by an effective feeding technique. The proposed model achieves wideband characteristics. The proposed model is printed on an inexpensive FR4 substrate with a size of 20 mm × 18 mm × 1.6 mm and has a wide impedance bandwidth of 124.4% in the range of 3.6–15.46 GHz. The prototype has been fabricated and the measured results show good agreement with simulated results. The antenna will cover WLAN, WiMAX, Wi-Fi, and X-band applications.

2020 ◽  
Vol 18 ◽  
pp. 33-41
Author(s):  
Jan Ückerseifer ◽  
Frank Gronwald

Abstract. This paper treats Characteristic Mode Analyses of three-dimensional test objects in the context of EMC. Based on computed Characteristic Modes and mode-specific physical quantities, series expansions for HIRF- and DCI-induced surface currents are deduced. The contribution of single Characteristic Modes to surface currents at different test frequencies is analyzed. HIRF- and DCI-excitations are compared with regard to their surface current distributions in their resonance region determined by Characteristic Mode Analysis.


Frequenz ◽  
2019 ◽  
Vol 73 (9-10) ◽  
pp. 317-320
Author(s):  
Saeid Karamzadeh ◽  
Vahid Rafiei ◽  
Hasan Saygin

Abstract In this work circularly polarization diversity has been achieved by utilizing two Schottky diodes on low profile cavity-backed substrate integrated waveguide (CBSIW). In comparison with other studies in the literature, the size of antenna has been reduced to 0.54λg × 0.76λg by helping a 50-Ohm coaxial feed line. The impedance bandwidth, axial ratio bandwidth and antenna gain are improved to 10.02 %, 5.2 % and 7.68dBi, respectively. In addition, the proposed antenna can generate either a left-hand circularly polarized (LHCP) or a right-hand circularly polarized (RHCP) radiation. The developed antenna was fabricated and tested and the achieved results were in good agreement with the simulated one.


2014 ◽  
Vol 2 (3) ◽  
pp. 51 ◽  
Author(s):  
A. Kandwal ◽  
R. Sharma ◽  
S. K. Khah

A novel gap coupled dual band multiple ring antenna with a defected ground structure (DGS) has been successfully implemented. A different technique is used in this communication where both gap coupling and defected ground are applied to obtain better results for wireless applications. The designed antenna operates in two different frequency bands. The antenna shows a wideband in C-band and also resonates in the X-band. The main parameters like return loss, impedance bandwidth, radiation pattern and gain are presented and discussed. The gain is increased and the side lobe level is considerably reduced to a good extent. Designed antenna is tested and the results show that the simulation and experimental results are in good agreement with each other.


2019 ◽  
Vol 8 (2) ◽  
pp. 134-142 ◽  
Author(s):  
Y. Haykir ◽  
O. A. Civi

Characteristic mode analysis of metal only unit cells of periodic structures is performed using Method of Moments based formulation. Ewald’s transformation is incorporated for a fast and cost efficient solution and the advantages over spatial Green’s function are discussed. The influence of the unit cell size on the characteristic modes is demonstrated. Various metal-only reflectarray elements are compared and their radiation characteristics are interpreted using the theory of characteristic modes. It is shown that characteristic modes of the unit cell can help us to understand the radiation and scattering behavior of the unit cell and this physical insight can be used in periodic array unit cell design.


A defected dodecagonal microstrip antenna fed through co-planar waveguide and operating in X-band frequency range(8-12 GHz) is proposed. Characteristic mode analysis is employed in examining the impact of defects on the resonant frequencies and return loss. Contrast in return loss for the suggested antenna with and without defects is dealt through Characteristic mode Analysis. Geometrical aspects of the proposed antenna are 40 mm × 35.5 mm × 0.1 mm. Subtrate material used in design is FR4 with a dielectric constant (εr ) = 4.4 and height (h) = 0.1m. CST Microwave Studio is used to simulate antenna parameters and Characteristic mode analysis. A return loss of -49.5dB at center frequency of 10.12GHz is observed with a fractional bandwidth of 47.6%. Gain of the antenna peaks at 4 dBi in the band of operation.


Electronics ◽  
2020 ◽  
Vol 9 (8) ◽  
pp. 1204 ◽  
Author(s):  
Sachin Kumar ◽  
Gwan Hui Lee ◽  
Dong Hwi Kim ◽  
Nashuha Syifa Haunan ◽  
Hyun Chul Choi ◽  
...  

A compact-sized planar super-wideband (SWB) monopole antenna with four notched bands is presented in this paper. The antenna consists of a rectangular ground plane and a circular radiator that is fed by a tapered microstrip feed line. The overall size of the antenna is 18 mm × 12 mm × 0.5 mm, and its impedance bandwidth (S11 ≤ −10 dB) ranges from 2.5 GHz to 40 GHz (bandwidth ratio of 16:1). Four notched bands are obtained using two inverted U-shaped slots, a split-ring resonator (SRR), and a meandered slot. The notched frequency bands can be adjustable by changing the parameters of parasitic slot elements, and the realized notched bands in this paper are Wi-MAX band (3.5 GHz), WLAN band (5.5 GHz), satellite communication X-band (7.5 GHz), and amateur radio band (10.5 GHz). The simulated and experimental results show good agreement with each other. The antenna possesses a high gain, super-wide impedance bandwidth, and omni-directional radiation patterns.


2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
J. A. Ansari ◽  
Sapna Verma ◽  
Ashish Singh

An investigation into the design and fabrication of multiband disk patch antenna with symmetrically quad C-slots is presented in this paper. The proposed antenna shows multiband resonance frequencies which highly depend on substrate thickness, dielectric constant, and radius of the disk patch. By incorporating two pairs of C-slots in optimum geometry on the radiating patch, the proposed antenna operates between 2 and 12 GHz at different frequency bands centered at 2.27, 7.505, 9.34, 10.33, and 11.61 GHz. The other antenna parameters are studied like gain, antenna efficiency, and radiation pattern. The proposed antenna may find applications in S-, C-, and X-band. The results are carried out with the aid of HFSS and MOM-based IE3D simulator. The measured and simulated results are in good agreement with each other.


2021 ◽  
Vol 35 (11) ◽  
pp. 1280-1281
Author(s):  
Binbin Yang ◽  
Abdullah Eroglu ◽  
Jacob Adams

This paper demonstrates a shape synthesis technique for multi-mode dielectric resonator antennas using binary genetic algorithm and characteristic mode analysis. The cost function for the synthesis process is defined from characteristic modal parameters, such as modal quality factors and self-resonance frequencies. Since only modal parameters are involved in the cost function, the shape synthesis process is made independent of feeds. In the paper, we demonstrate the shape synthesis of a DRA with three self-resonant modes at 3 GHz.


2019 ◽  
Vol 12 (2) ◽  
pp. 131-137
Author(s):  
Puneeth Kumar Rajanna ◽  
Karthik Rudramuni ◽  
Krishnamoorthy Kandasamy

AbstractThis paper presents a novel design of a low profile circularly polarized (CP) metasurface (MTS) antenna with in-band radar cross-section (RCS) reduction property. The MTS is loaded as a superstrate on slot antenna and it can be viewed as a polarization-dependent MTS (PDMTS). The rectangular patch-based PDMTS is analyzed using characteristic mode analysis to find two orthogonal degenerate modes, which produces CP waves. Linearly polarized slot antenna is used to excite the PDMTS. The performance of PDMTS loaded slot antenna is analyzed numerically using full-wave analysis method. The PDMTS CP antenna is fabricated and its performance is tested experimentally. The proposed antenna has a compact structure and it has an overall size of $0.52{\lambda _0}\times 0.52{\lambda _0} \times 0.078{\lambda _0}$ (where ${\lambda _0}$ is the free space wavelength). The measured results show that the PDMTS antenna achieves $-10\,{\rm dB}$ impedance bandwidth of 29.41$\%$, 3-dB axial ratio bandwidth of 9.05$\%$, broadside gain of 6.34 dB, and monostatic RCS reduction of $-30.2\,{\rm dBsm}$ at the resonant frequency of 5.86 GHz. The simulated results are in well agreement with the measured results and it is well suited for C-band Radar and Satellite communication.


2017 ◽  
Vol 9 (9) ◽  
pp. 1877-1881 ◽  
Author(s):  
Laaya Sabri ◽  
Nasrin Amiri ◽  
Keyvan Forooraghi

A new single-feed aperture-coupled, X-band microstrip patch antenna array with circular polarization (CP) is designed. CP is achieved using indented microstrip patches fed through the slots on a substrate integrated waveguide. The antenna has the high radiation efficiency more than 90% over the operating frequency. Impedance bandwidth (VSWR < 2) and axial ratio bandwidth (AR < 3 dB) of 11.8, and 10.9% is attained, respectively. Good agreement is achieved between simulated and measured results.


Sign in / Sign up

Export Citation Format

Share Document