Optimization of the parameters of a laser induced breakdown spectrometer (LIBS) using probabilistic-deterministic design of experiment

2021 ◽  
Vol 87 (5) ◽  
pp. 14-19
Author(s):  
V. N. Fomin ◽  
S. K. Aldabergenova ◽  
K. T. Rustembekov ◽  
K. B. Omarov ◽  
I. E. Rozhkovoy ◽  
...  

A method for optimizing the settings of a LIBS device aimed at achieving the maximum intensity of analytical lines of the analyte of constant composition is considered using probabilistic-deterministic design of experiments (PDDE). A mixture of Cr, Mn, Fe, Co, and Ni oxides homogenized and diluted by fusion with a lead-phosphate mixture is used as an analyte. It is shown that data of mathematical processing of 25 spectra by the PDDE method can be used to develop mathematical models which relate the line intensity with the energy of the laser pumping lamp, the lag time of the first and second Q-switches, the time delay of the exposure onset, and the total exposure time. The use of the geometric mean and mathematical model in the form of the product of the partial dependences leads to a good correlation between the calculated and experimental values of the intensity for all the considered spectral lines. The simulation results presented for 16 analytical lines of Cr, Mn, Co, and Ni illustrate the applicability of the method under consideration. The experimentally achieved maximum intensities of analytical lines in the matrix of lead-phosphate glass differ from those calculated using the obtained models by 7 – 12 %. There is a linear correlation between the experimental and calculated values of the intensity at R2 = 0.99 and an inclination angle close to 45°. The spectra recorded during the experiment can be used for optimization of other parameters, e.g., the signal-to-noise ratio. The simplicity of calculations and relatively small number of tests in the optimization experiment make the PDDE a promising method for optimizing the LIBS parameters.

2020 ◽  
Vol 64 (1-4) ◽  
pp. 431-438
Author(s):  
Jian Liu ◽  
Lihui Wang ◽  
Zhengqi Tian

The nonlinearity of the electric vehicle DC charging equipment and the complexity of the charging environment lead to the complex and changeable DC charging signal of the electric vehicle. It is urgent to study the distortion signal recognition method suitable for the electric vehicle DC charging. Focusing on the characteristics of fundamental and ripple in DC charging signal, the Kalman filter algorithm is used to establish the matrix model, and the state variable method is introduced into the filter algorithm to track the parameter state, and the amplitude and phase of the fundamental waves and each secondary ripple are identified; In view of the time-varying characteristics of the unsteady and abrupt signal in the DC charging signal, the stratification and threshold parameters of the wavelet transform are corrected, and a multi-resolution method is established to identify and separate the unsteady and abrupt signals. Identification method of DC charging distortion signal of electric vehicle based on Kalman/modified wavelet transform is used to decompose and identify the signal characteristics of the whole charging process. Experiment results demonstrate that the algorithm can accurately identify ripple, sudden change and unsteady wave during charging. It has higher signal to noise ratio and lower mean root mean square error.


2021 ◽  
Vol 11 (3) ◽  
pp. 1171
Author(s):  
Chang Xu ◽  
Zhihong Sun ◽  
Guowei Shao

Two-unit cells developed to predict the effective thermal conductivities of four-directional carbon/carbon composites with the finite element method are proposed in this paper. The smaller-size unit cell is formulated from the larger-size unit cell by two 180° rotational transformations. The temperature boundary conditions corresponding to the two-unit cells are derived, and the validity is verified by the temperature and heat flux distributions at specific positions of the larger-size unit cell and the smaller-size unit cell. The thermal conductivities of the carbon fiber bundles and carbon fiber rods are measured firstly. Then, combined with the properties of the matrix, the effective thermal conductivities of the four-directional carbon/carbon composites are numerically predicted. The results in transverse direction predicted by the larger-size unit cell and the smaller-size unit cell are both higher than experimental values, which are 5.8 to 6.2% and 7.3 to 8.2%, respectively. In longitudinal direction, the calculated thermal conductivities of the larger-size unit cell and the smaller-size unit cell are 6.8% and 6.2% higher than the experimental results, respectively. In addition, carbon fiber rods with different diameters are set to clarify the influence on the effective thermal conductivities of the four-directional carbon/carbon composites.


2020 ◽  
pp. 000370282097304
Author(s):  
Amal A. Khedr ◽  
Mahmoud A. Sliem ◽  
Mohamed Abdel-Harith

In the present work, nanoparticle-enhanced laser-induced breakdown spectroscopy was used to analyze an aluminum alloy. Although LIBS has numerous advantages, it suffers from low sensitivity and low detection limits compared to other spectrochemical analytical methods. However, using gold nanoparticles helps to overcome such drawbacks and enhances the LIBS sensitivity in analyzing aluminum alloy in the current work. Aluminum was the major element in the analyzed samples (99.9%), while magnesium (Mg) was the minor element (0.1%). The spread of gold nanoparticles onto the Al alloy and using a laser with different pulse energies were exploited to enhance the Al alloy spectral lines. The results showed that Au NPs successfully improved the alloy spectral lines intensity by eight times, which could be useful for detecting many trace elements in higher matrix alloys. Under the assumption of local thermodynamic equilibrium, the Boltzmann plot was used to calculate the plasma temperature. Besides, the electron density was calculated using Mg and H lines at Mg(I) at 285.2 nm and Hα(I) at 656.2 nm, respectively. Three-dimensional contour mapping and color fill images contributed to understanding the behavior of the involved effects.


Author(s):  
Ji Chen ◽  
Kaiping Zhan ◽  
Qingzhou Li ◽  
Zhiyang Tang ◽  
Chenwei Zhu ◽  
...  

The quantification accuracy of laser-induced breakdown spectroscopy was limited due to matrix effects. In this work, a method named unsupervised-clustering-based quantification (UCQ) was proposed to reduce the matrix effects by...


1977 ◽  
Vol 32 (8) ◽  
pp. 897-898 ◽  
Author(s):  
Y. K. Chan ◽  
B. S. Rao

Abstract The radial Schrödinger wave equation with Morse potential function is solved for HF molecule. The resulting vibration-rotation eigenfunctions are then used to compute the matrix elements of (r - re)n. These are combined with the experimental values of the electric dipole matrix elements to calculate the dipole moment coefficients, M 1 and M 2.


2015 ◽  
Vol 230 ◽  
pp. 153-159 ◽  
Author(s):  
Oksana Chukova ◽  
Sergiy G. Nedilko ◽  
Sergiy A. Nedilko ◽  
Tetiana Voitenko ◽  
Olga Gomenyuk ◽  
...  

The La1‑xEuxVO4 powders were synthesized by co-precipitation method. Emission spectra of the LaEuVO4 and La1‑xEuxVO4 powders consist of wide non-structural bands of the matrix emission and narrow spectral lines caused by inner f-f electron transitions in the Eu3+ ions, respectively. The both types of emission were studied within 8 – 300 K temperature range. Decomposition of spectra of the wide matrix emission on three bands has been carried out and temperature dependencies for each band were studied. Temperature behavior of the Eu3+ emission was investigated for lines assigned to different Eu3+ centres. Obtained dependencies are analyzed and discussed using proposed schemes of transitions in the VO43- groups and structure of the nearest surrounding of the Eu3+ emission centres.


2021 ◽  
Vol 21 (10) ◽  
pp. 249
Author(s):  
Zhong-Rui Bai ◽  
Hao-Tong Zhang ◽  
Hai-Long Yuan ◽  
Dong-Wei Fan ◽  
Bo-Liang He ◽  
...  

Abstract LAMOST Data Release 5, covering ∼17 000 deg2 from –10° to 80° in declination, contains 9 million co-added low-resolution spectra of celestial objects, each spectrum combined from repeat exposure of two to tens of times during Oct 2011 to Jun 2017. In this paper, we present the spectra of individual exposures for all the objects in LAMOST Data Release 5. For each spectrum, the equivalent width of 60 lines from 11 different elements are calculated with a new method combining the actual line core and fitted line wings. For stars earlier than F type, the Balmer lines are fitted with both emission and absorption profiles once two components are detected. Radial velocity of each individual exposure is measured by minimizing χ 2 between the spectrum and its best template. The database for equivalent widths of spectral lines and radial velocities of individual spectra are available online. Radial velocity uncertainties with different stellar type and signal-to-noise ratio are quantified by comparing different exposure of the same objects. We notice that the radial velocity uncertainty depends on the time lag between observations. For stars observed in the same day and with signal-to-noise ratio higher than 20, the radial velocity uncertainty is below 5km s−1, and increases to 10 km s−1 for stars observed in different nights.


Author(s):  
Ziyu Yu ◽  
Shunchun Yao ◽  
Yuan Jiang ◽  
Weize Chen ◽  
Shuixiu Xu ◽  
...  

Laser-induced breakdown spectroscopy analysis of coal particle flow presents milder matrix effect compared with coal pellet.


Atoms ◽  
2020 ◽  
Vol 8 (2) ◽  
pp. 18 ◽  
Author(s):  
Pascal Quinet ◽  
Patrick Palmeri

The main purpose of the Database on Rare Earths At Mons University (DREAM) is to provide the scientific community with updated spectroscopic parameters related to lanthanide atoms (Z = 57–71) in their lowest ionization stages. The radiative parameters (oscillator strengths and transitions probabilities) listed in the database have been obtained over the past 20 years by the Atomic Physics and Astrophysics group of Mons University, Belgium, thanks to a systematic and extensive use of the pseudo-relativistic Hartree-Fock (HFR) method modified for taking core-polarization and core-penetration effects into account. Most of these theoretical results have been validated by the good agreement obtained when comparing computed radiative lifetimes and accurate experimental values measured by the time-resolved laser-induced fluorescence technique. In the present paper, we report on the current status and developments of the database that gathers radiative parameters for more than 72,000 spectral lines in neutral, singly-, doubly-, and triply-ionized lanthanides.


Sign in / Sign up

Export Citation Format

Share Document