Assessment of changes in extreme precipitation affecting the degree of soil erosion in crop rotation

Author(s):  
V.V. Ilinich ◽  
◽  
A.A. Naumova

the presented research is dedicate to confirming the hypothesis about increase in extreme precipitation of recent decades, affecting the degree of soil erosion in crop rotations.

2004 ◽  
Vol 84 (2) ◽  
pp. 177-186 ◽  
Author(s):  
B. Jankauskas ◽  
G. Jankauskiene ◽  
M. A. Fullen

A combination of perennial grass species and selected crop rotations can help prevent soil erosion in upland regions and minimize the risk of soil erosion and associated water pollution (to both terrestrial and aquatic ecosystems). Research data were obtained on sandy loam Eutric Albeluvisols at the Kaltinenai Research Station of the Lithuanian Institute of Agriculture on the undulating hilly topography of the Zemaiciai Uplands of Western Lithuania. The aim was to identify crops and crop rotations that would minimize soil erosion. Measured water erosion rates over 18 yr of field experiments were: 3.2–8.6 m3 ha-1 yr-1 under winter rye, 9.0–27.1 m3 ha-1 yr-1 under spring barley and 24.2–87.1 m3 ha-1 yr-1 under potatoes. Perennial grasses completely prevented water erosion, while the erosion-preventive grass-grain crop rotations (>50% grass) decreased soil losses on arable slopes of 2–5°, 5–10° and 10–14° by 75–80%. The grain-grass crop rotation (<50% grass) decreased rates by 23–24% compared to the field crop rotation. The main attributes of the proposed soil conservation systems were the careful selection of optimum erosion-preventive ecosystems (sod-forming perennial grasses or erosion-preventive crop rotations) with high erosion-resisting capabilities. These selected systems varied in response to slope gradient and thus assist erosion control and ecological stability of the undulating topography of Lithuania. These results may have wider applicability on the undulating landscapes of the temperate agricultural zone. Key words: Undulating upland topography, water erosion rates, erosion-preventive crop rotations, temperate climate


Author(s):  
Ol'ga Gladysheva ◽  
Oksana Artyuhova ◽  
Vera Svirina

The results of long-term research in experiments with crop rotations with different clover saturation are presented. It is shown that the cluster has a positive effect on the main indicators of vegetation of dark-gray forest soil. The introduction of two fields of perennial grasses into the six-field crop rotation significantly increases both the humus reserves and increases the productivity of arable land by 1.5–2 times compared to the crop rotation with a field of pure steam.


Author(s):  
Saulius GUŽYS ◽  
Stefanija MISEVIČIENĖ

The use of nitrogen fertilizer is becoming a global problem; however continuous fertilization with nitrogen ensures large and constant harvests. An 8 year research (2006–2013) was conducted to evaluate the relationships between differently fertilized cultivated plant rotations. The research was conducted in Lipliunai (Lithuania) in the agroecosystem with nitrogen metabolism in fields with deeper carbonaceous soil, i.e. Endocalcari Endohypogleyic Cambisol (CMg-n-w-can). The research area covered three drained plots where crop rotation of differently fertilized cereals and perennial grasses was applied. Samples of soil, water and plants were investigated in the Chemical Analysis Laboratory of the Aleksandras Stulginskis University certified by the Environment Ministry of the Republic of Lithuania. The greatest productivity was found in a crop rotation with higher fertilization (N32-140). In crop rotation with lower fertilization (N24-90) productivity of cereals and perennial grasses (N0-80) was 11–35 % lower. The highest amount of mineral soil nitrogen was found in cereal crop rotation with higher fertilization. It was influenced by fertilization and crop productivity. The lowest Nmin and Ntotal concentrations in drainage water were found in grasses crop rotation. Crop rotations of differently fertilized cereals increased nitrogen concentration in drainage water. Nmin concentration in water depended on crop productivity, quantity of mineral soil nitrogen, fertilization, and nitrogen balance. The lowest nitrogen leaching was found in the crop rotation of grasses. Cereal crop rotation increased nitrogen leaching by 12–42 %. The usage of all crop rotations resulted in a negative nitrogen balance, which essentially depended on fertilization with nitrogen fertilizer.


Author(s):  
V. А. Shchedrin

In OOO “Dubovitskoe” which was organized in 2006 as investment project of the AO “Shchelkovo Agrokhim” for 2010 – 2012 three advanced crop rotations have been developed. Before their introduction the grain crops fraction in the cropping system was 62%, then it fell to 49%. At the same time the portion of raw crops increased from 15 to 20%, legumes from 6 to 8%, others (buckwheat, grain maize, etc.) - up to 23%. As of 2017, the crops of leguminous crops have increased noteworthily. There are two predominant soil types here heavy clay loam podzolized chernozem (6615 ha) and grey forest soil (856 ha). Weighted average indicators (as of 2017): humus content in the soils of arable land is 5, 34%; acidity pH is 4.92; labile phosphorus - 111.8 mg / kg soil; exchange potassium - 144 mg / kg soil. The coefficient of the soil fertility in the enterprise (weighted average) is 0.66. This means that maintaining and increasing the soil fertility for arable land of the enterprise is critical task. As a result of the research, it has been established that the technologies introduced in the crop vegetation management (CVS) in the crop rotation conditions ensure high productivity of cultivated crops and stability of humus content in soils as an energy basis and a guarantor of increasing fertility. The indicators of the labile phosphorus Р205 and exchange potassium К20 in the soils depending on the crop rotation vary from a certain decrease to expressed steady growth. Therefore it is necessary to specify seeding rates based on actual data. Sustainable soil acidification in the crop rotations under crop cultivation in OOO “Dubovitskoe” it is the result of the acid feterlizers high rates application, during studying period did not carried out required agromelioration with calcium contenting elements.


2018 ◽  
Vol 2 (95) ◽  
pp. 20-25
Author(s):  
O.J. Kachmar ◽  
O.V. Vavrynovych ◽  
O.L. Dubytsky ◽  
A.O. Dubytska ◽  
M.M. Shcherba

Scientific and methodological approaches to the formation of zonal ecologically safe crop rotations as a basic subsystem of farming in the formation of high, stable productivity of agricultural crops are substantiated, while ensuring the reproduction of soil fertility, increasing the efficiency of fertilizer systems and environmental protection. Various rotational crop rotations for introduction in the conditions of the Carpathian region in farms of different specialization and intensity of production are proposed.


2017 ◽  
Vol 1 (92) ◽  
pp. 62-68
Author(s):  
R. Holod ◽  
О. Bilinska ◽  
H. Shubala

There were analyzed and disclosed the basic components of arable farming systems and their Meaning, the current state and scientific principles in the context of the further development of field crop cultivation in the conditions of Western Forest-Steppe. The purpose of research. To study an effect of alternation of crop in crop rotation in conditions of brief rotation on the soil water regime, productivity and economic efficiency. Methods. Field, laboratory, comparative and analytical. Results. The results of researches on study of productivity of four-field crop rotations with short rotation depending on their saturation by the grain and tilled cultures, of various use of mineral fertilizers, green manure crops and collateral products which were conducted during 2014-2015 in the stationary experiment of the scientific and technological department of plant growing and arable farming, of the TDSGDS of the IKSGP of NAAN are resulted In the article. The elements of the biologization of farming are the basis of our development of crop rotations with short rotation. The study of the effect of green manure crops and collateral products in four-field crop rotations with a different set of crops on the change of soil fertility and productivity of crop rotations as a whole was carried out to this purpose. According to the results of the research, is provided the information on the effectiveness of improving the field crop rotations with short rotation with varying degrees of saturation by grain and tilled crops, that ensure the production of environmentally friendly products, reducing the cost of grain, improving the quality of marketable products. The study of the effect of alternation of crop in crop rotation in conditions of brief rotation on the soil water regime, productivity and economic efficiency showed that an increase in crop rotation productivity is observed in short-rotation crop rotations, if they are saturated by grain crops up to 100%, cereals crops reduction to 50% in crop rotations contributes to a decrease in crop productivity. Conclusion. Thus, the results of the research showed that with the correct construction of short rotational crop rotations, such problems as rational use of nutrients and soil moisture, control of weeds and pests of agricultural crops, improvement of the physical and chemical properties of the soil, increased efficiency in the use of fertilizers and equipment, Cheapening of the received agricultural product may be solved.


1995 ◽  
Vol 75 (3) ◽  
pp. 357-359 ◽  
Author(s):  
E. Bremer ◽  
H. H. Janzen ◽  
E. de Jong

Soil erosion may be difficult to quantify from redistribution of 137Cs at sites where stubble-mulch techniques were adopted prior to 137Cs deposition, because appreciable 137Cs may have been transported before it was mixed into the soil Ap layer. We present evidence that this occurred in two long-term cropping experiments in southern Alberta. Key words: Cesium-137, tillage, long-term crop rotations, fallow


Weed Science ◽  
1999 ◽  
Vol 47 (2) ◽  
pp. 175-183 ◽  
Author(s):  
George O. Kegode ◽  
Frank Forcella ◽  
Sharon Clay

Approaches to crop production that successfully reduce weed seed production can benefit farming systems by reducing management inputs and costs. A 5-yr rotation study was conducted in order to determine the effects that interactions between crop rotation, tillage, and amount of herbicide and fertilizer (management inputs) have on annual grass and broad-leaved weed seed production and fecundity. There were 10 crop rotation and tillage system combinations and three levels of management inputs (high, medium, and low). Green and yellow foxtail were the major weed species, and together they yielded between 76 and 93% of collected weed seeds. From 1990 to 1994, average grass weed seed productions were 7.3 by 103, 3.7 by 1036.1 by 103and 5.7 by 103seeds m−-2, whereas average broad-leaved weed seed productions were 0.4 by 103, 0.4 by 103, 1.4 by 103, and 0.4 by 103seeds m−-2in crop rotations using conventional tillage (moldboard plow), conservation tillage, no tillage, and ridge tillage, respectively. Crop rotations using conventional or ridge tillage consistently produced more grass and broad-leaved weed seeds, especially in low-input plots. There was little difference in weed seed production among input levels for crop rotations using conservation tillage. Comparing rotations that began and ended with a corn crop revealed that by increasing crop diversity within a rotation while simultaneously reducing the amount of tillage, significantly fewer grass and broad-leaved weed seeds were produced. Among the rotations, grass and broad-leaved weed fecundity were highly variable, but fecundity declined from 1990 to 1994 within each rotation, with a concomitant increase in grass and broad-leaved weed density over the same period. Crop rotation in combination with reduced tillage is an effective way of limiting grass and broad-leaved weed seed production, regardless of the level of management input applied.


2018 ◽  
Vol 12 (4) ◽  
pp. 45-49
Author(s):  
Валерий Чибис ◽  
Valeriy Chibis ◽  
Светлана Чибис ◽  
Svetlana Chibis ◽  
Илья Кутышев ◽  
...  

In a long-term places, located on the experimental fields of Siberian Research Institute of Agriculture (Omsk), the schemes of field crop rotations were modernized by introducing oil crops (rapeseed, soybean) into rotation and replacing the repeated wheat crops with barley and oats. Accounting of grain crops productivity and accompanying observations were carried out in three field rotations of different lengths of rotation (four- and five-field) and on permanent sowing. The repetition of the experiments is fourfold. The system of agrotechnical measures recommended for the zone of the forest-steppe of Western Siberia was applied. The study of predecessors in the cultivation of crops for various purposes was carried out in field experiments using conventional methods. The humus content for rotation in the soil layer of 0-40 cm increased by 0.19% in the crop rotation “rapeseed - wheat spring wheat - barley - soybean - spring wheat”. The largest accumulation of humus (0.83%) was in the rotation “soybean - spring wheat - barley – oats”. During the years of research wheat productivity varied from 0.82 to 2.22 tons per hectare. Wheat was the first crop in all its predecessors to form grains, on average, by 0.3-0.5 tons per hectare, than the second crop. The yield of soybeans in the crop rotation was 1.23-1.78 tons per hectare. The productivity of rapeseed was low, its productivity over the years was 1.31 tons per hectare. Grain-fodder crops (barley, oats) averaged 0.4-0.6 tons per hectare, higher than the spring wheat productivity in the alternating rotation. The maximum yield of grain from a hectare of arable land was noted in the crop-steam rotation and amounted to 1.7 tons. An increase in the yield of feed-protein units was observed in crop rotations saturated with oil crops (rapeseed and soybean) and amounted to 3.4-4.0 tons per hectare. The economic calculation showed that the cultivation of field crops in the rotational crop rotation of “soybean - wheat - barley – oats” increased profitability by 44%, net income - by half, in comparison with the control variant. The obtained materials can be used to develop schemes of field crop rotations for the zone of the forest-steppe of Western Siberia.


2019 ◽  
Vol 20 (5) ◽  
pp. 467-477
Author(s):  
L. M. Kozlova ◽  
E. N. Noskova ◽  
F. A. Popov

The long-term research conducted in 2002-2017 in a long stationary experiment on studying different types of field crop rotations under conditions of the Kirov region showed that on sod-podzolic soils the loss of humus could be lowered using agro technical methods. The most critical of them include the reduction of a portion of bare fallow, transition to sown and green-manure fallow, expanded use of perennial legume and grain-legume crops and intercrop sowings. In eight-field crop rotations when using such means of a biologization as plowing of the root-stubble residues, aboveground mass of green-manure crops in fallow fields and intercrop sowings, the supply of organic substance was within 17.24-83.03 t/ha. By mineral-ization of this substance 7.64-11.51 t of humus were produced. In a crop rotation with bare fallow there is a negative balance of humus of -0.06 t/ha. The positive balance is obtained when using sown, green-manure fallows, intercrop sowings (two-three fields), and introduction of up to 25% perennial legumes to the structure of crop rotations. The formation of 0.96-1.44 t/ha of humus in the arable layer provides positive balance of 0.20-0.72 t/ha. The increase of the part of grain crops up to 62.5-75.0% in the structure of crop rotations resulted in rise of their efficiency up to 4.74-4.79 thousand fodder units. It was 0.27-0.32 thousand fodder units higher than in the control crop rotation with bare fallow. Dependence of productivity of agricultural crops on humus content was insignificantly negative (r = -0.16). The efficiency of the studied crop rotations depended considerably on the amount of productive moisture in the soil in a phase of ear formation of grain crops (r = -0.78) and on biological activity of the soil (r = -0.80).


Sign in / Sign up

Export Citation Format

Share Document