scholarly journals Developing Methods and Algorithms for Cloud Computing Management Systems in Industrial Polymer Synthesis Processes

2021 ◽  
Vol 5 (6) ◽  
pp. 964-973
Author(s):  
Eldar Miftakhov ◽  
Svetlana Mustafina ◽  
Andrey Akimov ◽  
Oleg Larin ◽  
Alexei Gorlov

To date, the resources and computational capacity of companies have been insufficient to evaluate the technological properties of emerging products based on mathematical modelling tools. Often, several calculations have to be performed with different initial data. A remote computing system using a high-performance cluster can overcome this challenge. This study aims to develop unified methods and algorithms for a remote computing management system for modelling polymer synthesis processes at a continuous production scale. The mathematical description of the problem-solving algorithms is based on a kinetic approach to process investigation. A conceptual scheme for the proposed service can be built as a multi-level architecture with distributed layers for data storage and computation. This approach provides the basis for a unified database of laboratory and computational experiments to address and solve promising problems in the use of neural network technologies in chemical kinetics. The methods and algorithms embedded in the system eliminate the need for model description. The operation of the system was tested by simulating the simultaneous statement and computation of 15 to 30 tasks for an industrially significant polymer production process. Analysis of the time required showed a nearly 10-fold increase in the rate of operation when managing a set of similar tasks. The analysis shows that the described formulation and solution of problems is more time-efficient and provides better production modes. Doi: 10.28991/esj-2021-01324 Full Text: PDF

2016 ◽  
Vol 11 (1) ◽  
pp. 72-80
Author(s):  
O.V. Darintsev ◽  
A.B. Migranov

In article one of possible approaches to synthezis of group control of mobile robots which is based on use of cloud computing is considered. Distinctive feature of the offered techniques is adequate reflection of specifics of a scope and the robots of tasks solved by group in architecture of control-information systems, methods of the organization of information exchange, etc. The approach offered by authors allows to increase reliability and robustness of collectives of robots, to lower requirements to airborne computers when saving summary high performance in general.


2019 ◽  
Vol 16 ◽  
Author(s):  
Xufen Dai ◽  
Jiaxue Hao ◽  
Ying Feng ◽  
Jing Wang ◽  
Qiannan Li ◽  
...  

Background: Curcumin (CUR), a natural isolated compound from turmeric, has been the promising star in fighting many diseases but the broad application of curcumin has been limited ascribed to low bioavailability. Objective: The aim of this study is to pursue the enhancement of curcumin bioavailability through co-administration of vitamin C. Methods: Such purpose was achieved through the analysis of curcumin pharmacokinetics by high performance liquid chromatography coupled with electrospray ionization - tandem mass spectrometry (HPLC - ESI - MS/MS). The plasma was separated on a C18 reverse phase column using acetonitrile and ammonium formate solution (pH 6.5; 2.0 mM) at 0.8 mL/min. MS/MS detection was carried out in negative mode using mass patterns of m/z 367.0 > 216.7 for curcumin and m/z 265.2 > 223.9 for internal standard (honokiol). Results: Successful application of the proposed method in the pharmacokinetic study presented clear changes in key pharmacokinetic parameters including the growth of AUC (0-t) up to 2.4 times, 2.2-fold increase of Cmax, 2.2-fold loss of CL, and 1.5-fold diminishment of t1/2. Conclusion: We developed an HPLC-ESI-MS/MS method for determination of curcumin in rat plasma and validated the improvement of bioavailability of curcumin through co-administration of vitamin C. We reasoned these changes to the inhibition of lipid peroxidation induced by the use of vitamin C. Such a simple strategy is possible to become an alternative for enhancing curcumin efficiency in practice.


Author(s):  
Mark Endrei ◽  
Chao Jin ◽  
Minh Ngoc Dinh ◽  
David Abramson ◽  
Heidi Poxon ◽  
...  

Rising power costs and constraints are driving a growing focus on the energy efficiency of high performance computing systems. The unique characteristics of a particular system and workload and their effect on performance and energy efficiency are typically difficult for application users to assess and to control. Settings for optimum performance and energy efficiency can also diverge, so we need to identify trade-off options that guide a suitable balance between energy use and performance. We present statistical and machine learning models that only require a small number of runs to make accurate Pareto-optimal trade-off predictions using parameters that users can control. We study model training and validation using several parallel kernels and more complex workloads, including Algebraic Multigrid (AMG), Large-scale Atomic Molecular Massively Parallel Simulator, and Livermore Unstructured Lagrangian Explicit Shock Hydrodynamics. We demonstrate that we can train the models using as few as 12 runs, with prediction error of less than 10%. Our AMG results identify trade-off options that provide up to 45% improvement in energy efficiency for around 10% performance loss. We reduce the sample measurement time required for AMG by 90%, from 13 h to 74 min.


Author(s):  
Marta Oliveira ◽  
Sílvia Capelas ◽  
Cristina Delerue-Matos ◽  
Simone Morais

Grilling activities release large amounts of hazardous pollutants, but information on restaurant grill workers’ exposure to polycyclic aromatic hydrocarbons (PAHs) is almost inexistent. This study assessed the impact of grilling emissions on total workers’ exposure to PAHs by evaluating the concentrations of six urinary biomarkers of exposure (OHPAHs): naphthalene, acenaphthene, fluorene, phenanthrene, pyrene, and benzo(a)pyrene. Individual levels and excretion profiles of urinary OHPAHs were determined during working and nonworking periods. Urinary OHPAHs were quantified by high-performance liquid-chromatography with fluorescence detection. Levels of total OHPAHs (∑OHPAHs) were significantly increased (about nine times; p ≤ 0.001) during working comparatively with nonworking days. Urinary 1-hydroxynaphthalene + 1-hydroxyacenapthene and 2-hydroxyfluorene presented the highest increments (ca. 23- and 6-fold increase, respectively), followed by 1-hydroxyphenanthrene (ca. 2.3 times) and 1-hydroxypyrene (ca. 1.8 times). Additionally, 1-hydroxypyrene levels were higher than the benchmark, 0.5 µmol/mol creatinine, in 5% of exposed workers. Moreover, 3-hydroxybenzo(a)pyrene, biomarker of exposure to carcinogenic PAHs, was detected in 13% of exposed workers. Individual excretion profiles showed a cumulative increase in ∑OHPAHs during consecutive working days. A principal component analysis model partially discriminated workers’ exposure during working and nonworking periods showing the impact of grilling activities. Urinary OHPAHs were increased in grill workers during working days.


Coatings ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 318
Author(s):  
Yang Li ◽  
Cheng Zhang ◽  
Zhiming Shi ◽  
Jingni Li ◽  
Qingyun Qian ◽  
...  

The explosive growth of data and information has increasingly motivated scientific and technological endeavors toward ultra-high-density data storage (UHDDS) applications. Herein, a donor−acceptor (D–A) type small conjugated molecule containing benzothiadiazole (BT) is prepared (NIBTCN), which demonstrates multilevel resistive memory behavior and holds considerable promise for implementing the target of UHDDS. The as-prepared device presents distinct current ratios of 105.2/103.2/1, low threshold voltages of −1.90 V and −3.85 V, and satisfactory reproducibility beyond 60%, which suggests reliable device performance. This work represents a favorable step toward further development of highly-efficient D−A molecular systems, which opens more opportunities for achieving high performance multilevel memory materials and devices.


2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Jiyun Heo ◽  
Jae-Yun Han ◽  
Soohyun Kim ◽  
Seongmin Yuk ◽  
Chanyong Choi ◽  
...  

Abstract The vanadium redox flow battery is considered one of the most promising candidates for use in large-scale energy storage systems. However, its commercialization has been hindered due to the high manufacturing cost of the vanadium electrolyte, which is currently prepared using a costly electrolysis method with limited productivity. In this work, we present a simpler method for chemical production of impurity-free V3.5+ electrolyte by utilizing formic acid as a reducing agent and Pt/C as a catalyst. With the catalytic reduction of V4+ electrolyte, a high quality V3.5+ electrolyte was successfully produced and excellent cell performance was achieved. Based on the result, a prototype catalytic reactor employing Pt/C-decorated carbon felt was designed, and high-speed, continuous production of V3.5+ electrolyte in this manner was demonstrated with the reactor. This invention offers a simple but practical strategy to reduce the production cost of V3.5+ electrolyte while retaining quality that is adequate for high-performance operations.


1996 ◽  
Vol 118 (4) ◽  
pp. 639-645 ◽  
Author(s):  
C. B. Park ◽  
N. P. Suh

An extrusion system that can create a polymer/gas solution rapidly for continuous processing of microcellular plastics is presented. Microcellular plastics are characterized by cell densities greater than 109 cells/cm3 and fully grown cells smaller than 10 μm. Previously these microcellular structures have been produced in a batch process by saturating a polymeric material with an inert gas under high pressure followed by inducing a rapid drop in the gas solubility. The diffusion phenomena encountered in this batch processing is typically slow, resulting in long cycle times. In order to produce microcellular plastics at industrial production rates, a means for the rapid solution formation is developed. The processing time required for completing the solution formation in the system was estimated from experimental data and the dispersive mixing theory based on an order-of-magnitude analysis. A means for promoting high bubble nucleation rates in the gas-saturated polymer via rapid heating is also discussed. The feasibility of the continuous production of microcellular plastics by the rapid polymer/gas solution formation and rapid heating was demonstrated through experiments. The paper includes not only a brief treatment of the basic science of the polymer/gas systems, but also the development of an industrially viable technology that fully utilizes the unique properties of microcellular plastics.


Sign in / Sign up

Export Citation Format

Share Document