scholarly journals Microbiological Condition of Retail Beef Steaks: A Canadian Survey

2018 ◽  
Vol 7 (4) ◽  
pp. 1 ◽  
Author(s):  
Xianqin Yang ◽  
Julia Devos ◽  
Hui Wang ◽  
Mark Klassen

The second national baseline microbiological survey of beef steaks offered for retail in Canada was conducted in 2015. A total of 621 steaks of four types (cross rib, CR; inside round, IR; striploin, SL; top sirloin, TS) collected from 135 retail stores in five cities across Canada were tested. Swab samples each from swabbing the entire upper surface of each steak were processed for enumeration of seven groups of indicator organisms: total aerobes (AER), psychrotrophs (PSY), lactic acid bacteria (LAB), pseudomonads (PSE), Brochothrix thermosphacta (BRO), coliforms (COL) and Escherichia coli (ECO). The overall mean values (log CFU/100 cm2) were 5.17±1.29, 4.92±1.36, 4.79±1.42, 3.26±1.49, 2.34±1.88, and 0.80±1.05 for AER, PSY, LAB, PSE, BRO, and COL, respectively. ECO were not recovered from 87.3% of the steaks and when there was recovery, the numbers were mostly ≤ 1 log CFU/100 cm2. Strong correlation was found between the log numbers of AER and PSY, of AER and LAB, and of PSY and LAB, while the correlation between the log numbers of COL and ECO was weak. The numbers of COL and ECO from different groups of steak types or from different cities were not substantially different. Of the four types of steaks, IR had the lowest median values for AER, PSY, LAB, PSE and BRO, followed by CR. The microbiological condition of retail beef steaks in this survey was on par with that in the previous one, with very low numbers of generic E. coli being recovered from very few steaks and the indicators for microbial quality being at numbers much lower than the upper limit for shelf life of beef.

2012 ◽  
Vol 1 (4) ◽  
pp. 124 ◽  
Author(s):  
M. Badoni ◽  
S. Rajagopal ◽  
J. L. Aalhus ◽  
M. D. Klassen ◽  
C. O. Gill

<p>Steaks of 4 types collected from 113 retails stores in 4 Canadian cities were frozen for storage. Swab samples collected from approximately 100 cm<sup>2</sup> of each of 598 thawed steaks were processed for enumeration of bacteria. The fraction of steaks from which total aerobic counts (AER), psychrotrophs (PSY), lactic acid bacteria (LAB), pseudomonads(PSE) and <em>Brochothrix thermosphacta</em> (BRO) were not recovered at <span style="text-decoration: underline;">&gt;</span> 2 log cfu/100 cm<sup>2 </sup>were 3, 12, 8, 25 and 51%, respectively. The fractions of steaks from which coliforms (COL) and <em>Escherichia coli</em> (ECO) were not recovered at <span style="text-decoration: underline;">&gt;</span> 0 log cfu/ 100 cm<sup>2 </sup>were 56 and 92%, respectively. The log number per 100 cm<sup>2</sup> recovered from <span style="text-decoration: underline;">&gt;</span> 90% of steaks were &lt; 6 for AER, PSY and LAB, &lt; 5 for PSE, &lt;4 for BRO, and &lt; 2 for COL. The microbiological conditions of groups of steaks of different types, from different cities or from different groups of stores were not substantially different.</p>


2021 ◽  
Vol 31 (4) ◽  
pp. 2
Author(s):  
IDSAP Peramiarti

Diarrhea is defecation with a frequency more often than usual (three times or more) a day (10 mL/kg/day) with a soft or liquid consistency, even in the form of water alone. Pathogenic bacteria, such as Escherichia coli, Salmonella typhimurium, and Shigella sp., play a role in many cases, to which antibiotics are prescribed as the first-line therapy. However, since antibiotic resistance cases are often found, preventive therapies are needed, such as consuming yogurt, which is produced through a fermentation process by lactic acid bacteria (LAB). This research aimed to determine the activity of lactic acid bacteria (Liactobacillus bulgaricus and Streptococcus thermophilus) in yogurt in inhibiting the growth of the pathogenic bacteria E. coli, S. typhimurium, and Shigella sp. The research applied in vitro with the liquid dilution test method and the true experimental design research method with post-test-only and control group design. The design was used to see the inhibitory effect of yogurt LAB on the growth of E. coli, S. typhimurium, and Shigell sp. to compare the effect of several different yogurt concentrations, namely 20%, 40%, 60%, and 80%. The results of the Least Significance Different analysis showed that there was a significant difference between yogurt with a concentration of 0% and that with various concentrations in inhibiting the growth of E. coli, S. typhimurium, and Shigella sp. with a p-value of &lt;0.05. Whereas, there was no significant difference in the various concentrations of yogurt in inhibiting the growth of the three kinds of bacteria with a p-value of &gt; 0.05.<p class="Default" align="center"> </p>


2020 ◽  
Vol 12 (4) ◽  
pp. 357-365
Author(s):  
H.I. Atta ◽  
A. Gimba ◽  
T. Bamgbose

Abstract. The production of bacteriocins by lactic acid bacteria affords them the ability to inhibit the growth of bacteria; they are particularly important in the biocontrol of human and plant pathogens. Lactic acid bacteria have been frequently isolated from fermented foods due to the high acidity these foods contain. In this study, lactic acid bacteria were isolated from garri, a popular Nigerian staple food, which is fermented from cassava, and their antagonistic activity against clinical and environmental isolates of Escherichia coli was determined. The species of Lactobacillus isolated include: Lactobacillus plantarum (50%), Lactobacillus fermentum (20%), Lactobacillus acidophilus (20%), and Lactobacillus salivarius (10%). Growth inhibition of the strains of E.coli was observed in Lactobacillus plantarum that inhibited the growth of both. The clinical and environmental isolates of E. coli were inhibited by Lactobacillus plantarum, while Lactobacillus acidophilus showed activity against only the clinical isolate. The greatest zone of inhibition against the strains of E. coli was recorded by Lactobacillus acidophilus (22.7±1.53 mm). The bacteriocins produced by Lactobacillus species have a good potential in the biocontrol of pathogens, and should be the focus of further studies on antibiotic resistant bacteria.


2001 ◽  
Vol 64 (8) ◽  
pp. 1145-1150 ◽  
Author(s):  
NAVEEN CHIKTHIMMAH ◽  
RAMASWAMY C. ANANTHESWARAN ◽  
ROBERT F. ROBERTS ◽  
EDWARD W. MILLS ◽  
STEPHEN J. KNABEL

Due to undesirable quality changes, Lebanon bologna is often processed at temperatures that do not exceed 48.8°C (120°F). Therefore, it is important to study parameters that influence the destruction of Escherichia coli O157:H7 in Lebanon bologna. The objective of the present study was to determine the influence of curing salts (NaCl and NaNO2) on the destruction of E. coli O157:H7 during Lebanon bologna processing. Fermentation to pH 4.7 at 37.7°C reduced populations of E. coli O157:H7 by approximately 0.3 log10, either in the presence or absence of curing salts. Subsequent destruction of E. coli O157:H7 during heating of fermented product to 46.1°C was significantly reduced by the presence of 3.5% NaCl and 156 ppm NaNO2, compared to product without curing salts (P &lt; 0.01). The presence of a higher level of NaCl (5%) in Lebanon bologna inhibited the growth of lactic acid bacteria (LAB), which yielded product with higher pH (~5.0) and significantly reduced the destruction of E. coli O157:H7 even further (P &lt; 0.05). Lower concentrations of NaCl (0, 2.5%) yielded Lebanon bologna with higher LAB counts and lower pHs, compared to product with 5% NaCl. When lactic acid was used to adjust pH in product containing different levels of NaCl, it was determined that low pH was directly influencing destruction of E. coli O157:H7, not NaCl concentration.


2003 ◽  
Vol 66 (3) ◽  
pp. 355-363 ◽  
Author(s):  
M. M. BRASHEARS ◽  
D. JARONI ◽  
J. TRIMBLE

Lactic acid bacteria (LAB) were selected on the basis of characteristics indicating that they would be good candidates for a competitive exclusion product (CEP) that would inhibit Escherichia coli O157:H7 in the intestinal tract of live cattle. Fecal samples from cattle that were culture negative for E. coli O157:H7 were collected. LAB were isolated from cattle feces by repeated plating on deMan Rogosa Sharpe agar and lactobacillus selection agar. Six hundred eighty-six pure colonies were isolated, and an agar spot test was used to test each isolate for its inhibition of a four-strain mixture of E. coli O157:H7. Three hundred fifty-five isolates (52%) showed significant inhibition. Seventy-five isolates showing maximum inhibition were screened for acid and bile tolerance. Most isolates were tolerant of acid at pH levels of 2, 4, 5, and 7 and at bile levels of 0.05, 0.15, and 0.3% (oxgall) and were subsequently identified with the API system. Lactobacillus acidophilus, Lactobacillus fermentum, Lactobacillus delbreukii, Lactobacillus salivarius, Lactobacillus brevis, Lactobacillus cellobiosus, Leuconostoc spp., and Pediococcus acidilactici were the most commonly identified LAB. Nineteen strains were further tested for antibiotic resistance and inhibition of E. coli O157:H7 in manure and rumen fluid. Four of these 19 strains showed susceptibility to all of the antibiotics, 13 significantly reduced E. coli counts in manure, and 15 significantly reduced E. coli counts in rumen fluid (P &lt; 0.05) during at least one of the sampling periods. One of the strains, M35, was selected as the best candidate for a CEP. A 16S rRNA sequence analysis of M35 revealed its close homology to Lactobacillus crispatus. The CEP developed will be used in cattle-feeding trials.


2021 ◽  
Vol 13 (1) ◽  
pp. 122-127
Author(s):  
Ayomide F. Sowemimo ◽  
Abiola O. Obisesan ◽  
Funmilola A. Ayeni

Kunu is a non-alcoholic fermented cereal beverage consumed primarily as a refreshing drink. This study investigated the effects of storage conditions on viability of Lactic Acid Bacteria (LAB) in kunu and the antibacterial effects of Kunu against diarrhoea caused by Escherichia coli strains. Kunu was prepared according to local traditional method. Viability counts of LAB in kunu stored at two different conditions, cold (4 ℃ average) and room temperature (26 ℃ average), were evaluated. Isolated LAB from kunu were identified by partial sequencing of 16S rRNA gene. Five pathotypes of diarrhoea caused by E. coli strains were co-cultured with kunu to evaluate its antimicrobial activities. Viable LAB count in kunu ranged from 5.0 x 109 to 1.0 x 1011 cfu/mL. Pediococcus pentosaceus, Lactobacillus plantarum and Leuconostoc pseudomesenteroides were identified from kunu. There is a drastic decrease (2-5 log reduction) in E. coli strains co-cultured with kunu. The observed high viable counts of beneficial LAB in kunu with its antimicrobial activities against diarrhoeaogenic E. coli strains indicates that kunu is not just a refreshing drink, but it also has antimicrobial potential against diarrhoea caused by E. coli.


2020 ◽  
Vol 2 ◽  
pp. 00002
Author(s):  
Dyah Fitri Kusharyati ◽  
Pancrasia Maria Hendrati ◽  
Dini Ryandini ◽  
Tsani Abu Manshur ◽  
Meilany Ariati Dewi ◽  
...  

<p class="Abstract"><i>Bifidobacterium</i> is a group of Lactic Acid Bacteria (LAB) that commonly found in the gastrointestinal tract and vagina. LAB has many health benefits, such as produce an antimicrobial substance against a pathogen. This research aims to isolate <i>Bifidobacterium</i> from an infant’s feces and know its antimicrobial activity against <i>Escherichia coli</i> and <i>Candida albicans.</i> A total of 5 isolates <i>Bifidobacterium</i> spp. were isolated from the sample. <span lang="EN">The largest inhibitory activity against <i>E. coli</i> was shown by isolate Bb3F, with the inhibitory zone of 10.80 mm. While the largest inhibition activity against <i>C. albicans</i> was shown by isolate Bb1B and Bb3F with the inhibitory zone of 9.70 mm.</span><o:p></o:p></p>


1977 ◽  
Vol 40 (11) ◽  
pp. 754-759 ◽  
Author(s):  
J. F. FRANK ◽  
E. H. MARTH

Inhibition of enteropathogenic Escherichia coli in skimmilk at 21 and 32 C by 0.25 and 2.0% of added Streptococcus lactis, Streptococcus cremoris, or a mixed strain starter culture was studied. After 15 h of fermentation, fermented milks were refrigerated at 7 C and then were tested periodically for survival of E. coli. Three methods for enumeration of E. coli during these fermentations were compared. They included trypticase soy agar (TSA) pour plates, violet red bile agar (VRB) pour plates, and TSA surface plating with a VRB overlay. Lactic cultures had similar inhibitory properties at 32 C, but there were differences at 21 C, with S. lactis being least inhibitory and the mixed strain culture most inhibitory. The VRB pour plate method gave poorest recovery of E. coli when fermentation was at 32 C and when fermented milks were refrigerated. The TSA surface plating method apparently allowed for recovery of injured E. coli cells and gave results similar to the TSA pour plate method.


2000 ◽  
Vol 63 (9) ◽  
pp. 1253-1257 ◽  
Author(s):  
F. M. NATTRESS ◽  
A. C. MURRAY

Three groups, each of 45 pigs, were either not fasted, fasted for 15 h during lairage at the abattoir, or fasted for 15 h before dispatch from the piggery to the abattoir. Three subgroups, each of 15 pigs from each group, were held at the abattoir for additional times of either 0 to 1 h, 2 to 3 h, or 4 to 5 h. Immediately after slaughter, stomach and cecal contents were collected for pH measurement and enumeration of coliforms, Escherichia coli biotype 1 and lactic acid bacteria (LAB). Stomach pH changed from 4.1 to 3.1 as additional abattoir holding time increased from 0 to 1 h to 4 to 5 h but was unaffected by feed withdrawal (mean pH, 3.5). Cecal pH (range 6.4 to 7.2) increased in response to both treatments. Coliform and E. coli biotype 1 numbers in the stomach, means 4.6 and 4.5 log CFU/g, respectively, were not affected by feed withdrawal but decreased 0.8 log units as additional abattoir holding time increased from 0 to 1 to 4 to 5 h. LAB in the stomach decreased in response to both feed withdrawal and holding at the abattoir. Cecal numbers of coliforms and E. coli biotype 1 increased 0.8 and 1.0 log units to 7.8 and 7.6 log CFU/g, respectively, as a result of feed withdrawal, and 0.6 log units to 7.6 and 7.5 log CFU/g, respectively, as additional abattoir holding time increased to 4 to 5 h. The LAB in the cecum (mean 9.4 log CFU/g) increased slightly with increasing abattoir holding time. In the event of release of stomach or cecal contents onto the meat during carcass dressing, larger numbers of E. coli per g would be released from the ceca and fewer per g from the stomachs of pigs that have had feed withdrawn as compared to pigs not subjected to feed withdrawal.


Author(s):  
ROSALINA YULIANA AYEN ◽  
ENDANG KUSDIYANTINI ◽  
SRI PUJIYANTO

Objective: This research aimed to isolate, determine the characteristics of lactic acid bacteria (LAB) of Sui Wu’u from Bajawa, Nusa Tenggara Timur and identify LAB using 16S rRNA potential as antimicrobial activity against pathogenic bacteria. Methods: Sui Wu’u which has been stored for 6 months was obtained from Bajawa district, inoculated on de Man Rogosa-Sharpe Agar (Merck) + 0.5% CaCO3, purification of LAB, characterization of selected isolates, biochemical test, tolerance test for pH, viability to test temperature, and content NaCl, determination of antimicrobial action by the agar well disk diffusion method using antibiotic (Amoxicillin) as a control and as indicator bacteria (Staphylococcus aureus and Escherichia coli) and isolation of genomic 16S rRNA; molecular identification. Results: Based on research results obtained five isolates of LAB, Gram staining the LAB isolated from Sui Wu’u showed that the isolated bacteria (bacilli and coccus) are Gram-positive, catalase-negative and the isolates have tolerance of viability at temperatures of 10°C, 45°C, and 50°C and to salinitas of 4% and 6.5%. The inhibitory zone LAB isolates (2PKT) against E. coli bacteria (20 mm) and S. aureus (12 mm), and (2PKB) against E. coli bacteria (17 mm) and S. aureus (10 mm). The two selected isolates were identified as Lactobacillus fermentum strain HB bacteria with 100% identification value and 98.93% query cover and L. fermentum strain HT with 100% identification value and 99.23% query cover. Conclusion: L. fermentum from Sui Wu’u has antibacterial activity against Staphylococcus aureus and Escherichia coli.


Sign in / Sign up

Export Citation Format

Share Document