scholarly journals Accuracy of ECG chest electrode placements by paramedics: an observational study

2021 ◽  
Vol 6 (1) ◽  
pp. 8-14
Author(s):  
Pete Gregory ◽  
Tim Kilner ◽  
Stephen Lodge ◽  
Suzy Paget

Background: The use of the 12-lead electrocardiogram (ECG) is common in sophisticated pre-hospital emergency medical services but its value depends upon accurate placement of the ECG electrodes. Several studies have shown widespread variation in the placement of chest electrodes by other health professionals but no studies have addressed the accuracy of paramedics. The main objective of this study was to ascertain the accuracy of the chest lead placements by registered paramedics.Methods: Registered paramedics who attended the Emergency Services Show in Birmingham in September 2018 were invited to participate in this observational study. Participants were asked to place the chest electrodes on a male model in accordance with their current practice. Correct positioning was determined against the Society for Cardiological Science and Technology’s 2017 clinical guidelines for recording a standard 12-lead ECG, with a tolerance of 19 mm being deemed acceptable based upon previous studies.Results: Fifty-two eligible participants completed the study. Measurement of electrode placement in the vertical and horizontal planes showed a high level of inaccuracy, with 3/52 (5.8%) participants able to accurately place all chest electrodes. In leads V1‐V3, the majority of incorrect placements were related to vertical displacement, with most participants able to identify the correct horizontal position. In V4, the tendency was to place the electrode too low and to the left of the pre-determined position, while V5 tended to be below the expected positioning but in the correct horizontal alignment. There was a less defined pattern of error in V6, although vertical displacement was more likely than horizontal displacement.Conclusions: Our study identified a high level of variation in the placement of chest ECG electrodes, which could alter the morphology of the ECG. Correct placement of V1 improved placement of other electrodes. Improved initial and refresher training should focus on identification of landmarks and correct placement of V1.

2019 ◽  
Vol 4 (3) ◽  
pp. 51-52
Author(s):  
Pete Gregory ◽  
Stephen Lodge ◽  
Tim Kilner ◽  
Suzy Paget

Introduction: The main aim of this study was to ascertain the accuracy of the chest lead placements by registered paramedics.Methods: Registered paramedics who attended the Emergency Services Show in Birmingham in September 2018 were invited to participate in this observational study. Participants were asked to place the chest electrodes on a human male model in accordance with their current practice. Correct positioning was determined against the Society for Cardiological Science and Technology’s 2017 clinical guidelines for recording a standard 12-lead electrocardiogram, with a tolerance of 19 mm being deemed acceptable based upon previous studies. Participants were also asked to indicate what they believed to be the correct positions on an anatomical diagram, and to describe the landmarks and positions in writing.Results: A total of 52 eligible participants completed the study. Measurement of electrode placement in the craniocaudal and mediolateral planes showed a high level of inaccuracy, with 3/52 (5.8%) participants able to accurately place all chest leads. In leads V1‐V3, the majority of incorrect placements were related to vertical displacement, with most participants able to identify the correct horizontal position. In V4, the tendency was to place the lead too low and to the left of the pre-determined position, while V5 tended to be below the expected positioning but in the correct horizontal alignment. There was a less defined pattern of error in V6, although vertical displacement was more likely than horizontal displacement. Only 1.9% of participants were able to correctly label the diagram and 1.9% were correctly able to write down the landmarks and correct positions.Conclusion: Our study identified a high level of variation in the placement of chest ECG electrodes, which could alter the morphology of the ECG. There was also a high degree of inaccuracy in the written components of the study, which suggests that underpinning knowledge is likely to be a major factor behind this variation. From a patient safety perspective, we would advocate that paramedics leave the chest electrodes in situ to allow hospital staff to assess the accuracy of the placements. Further consideration needs to be given to initial and ongoing training of ECG electrode placement to improve performance.


2019 ◽  
Vol 36 (10) ◽  
pp. e2.1-e2
Author(s):  
Pete Gregory ◽  
Stephen Lodge ◽  
Suzy Paget ◽  
Tim Kilner

BackgroundThe use of the 12-lead ECG is common in UK paramedic practice but its value depends upon accurate placement of the ECG-electrodes. Several studies have shown widespread variation in the placement of chest electrodes by other health professionals but no studies have addressed the accuracy of paramedics. The main objective of this study was to ascertain the accuracy of the chest lead placements by registered paramedics.MethodsRegistered paramedics who attended the Emergency Services Show in Birmingham in September 2018 were invited to participate in this observational study. Participants were asked to place the chest electrodes on a male model in accordance with their current practice. Correct positioning was determined against the Society for Cardiological Science & Technology’s Clinical Guidelines for recording a standard 12-lead electrocardiogram (2017) with a tolerance of 19 mm being deemed acceptable based upon previous studies.Results52 eligible participants completed the study. Measurement of electrode placement in the craniocaudal and mediolateral planes showed a high level of inaccuracy with 3/52 (5.8%) participants able to accurately place all chest leads. In leads V1 - V3, the majority of incorrect placements were related to vertical displacement with most participants able to identify the correct horizontal position. In V4, the tendency was to place the lead too low and to the left of the pre-determined position whilst V5 tended to be below the expected positioning but in the correct horizontal alignment. There was a less defined pattern of error in V6 although vertical displacement was more likely than horizontal displacement.ConclusionsOur study identified a high level of variation in the placement of chest ECG electrodes which could alter the morphology of the ECG. From a patient safety perspective, we would advocate that paramedics leave the chest electrodes in situ to allow hospital staff to assess the accuracy of the placements.


2019 ◽  
Author(s):  
Pete Gregory ◽  
Stephen Lodge ◽  
Tim Kilner ◽  
Suzy Paget

AbstractBackgroundThe use of the 12-lead ECG is common in UK paramedic practice but its value depends upon accurate placement of the ECG-electrodes. Several studies have shown widespread variation in the placement of chest electrodes by other health professionals but no studies have addressed the accuracy of paramedics. The main objective of this study was to ascertain the accuracy of the chest lead placements by registered paramedics.MethodsRegistered paramedics who attended the Emergency Services Show in Birmingham in September 2018 were invited to participate in this observational study. Participants were asked to place the chest electrodes on a male model in accordance with their current practice. Correct positioning was determined against the Society for Cardiological Science & Technology’s Clinical Guidelines for recording a standard 12-lead electrocardiogram (2017) with a tolerance of 19mm being deemed acceptable based upon previous studies.Results52 eligible participants completed the study. Measurement of electrode placement in the craniocaudal and mediolateral planes showed a high level of inaccuracy with 3/52 (5.8%) participants able to accurately place all chest leads. In leads V1 - V3, the majority of incorrect placements were related to vertical displacement with most participants able to identify the correct horizontal position. In V4, the tendency was to place the lead too low and to the left of the pre-determined position whilst V5 tended to be below the expected positioning but in the correct horizontal alignment. There was a less defined pattern of error in V6 although vertical displacement was more likely than horizontal displacement.ConclusionsOur study identified a high level of variation in the placement of chest ECG electrodes which could alter the morphology of the ECG. From a patient safety perspective, we would advocate that paramedics leave the chest electrodes in situ to allow hospital staff to assess the accuracy of the placements.Key messagesWhat is already known on this subjectThe recording of a prehospital ECG has become increasingly common in sophisticated Emergency Medical Services across the worldThe accuracy of precordial ECG electrode placement has been studied with other health professionals and has highlighted varying degrees of accuracy.Inaccurate electrode placement can lead to aberrant ECG readings and application of unnecessary treatment or the withholding of indicated treatmentWhat this study addsIn this observational cohort study, we found significant variation in the placement of the precordial ECG electrodes by UK registered paramedicsWe recommend that paramedics leave the prehospital ECG electrodes in situ to allow hospital staff to assess the accuracy of the placements.


2020 ◽  
Vol 6 (1) ◽  
Author(s):  
Toshifumi Nogawa ◽  
Masayasu Saito ◽  
Naomichi Murashima ◽  
Yoshiyuki Takayama ◽  
Atsuro Yokoyama

Abstract Background Implant-supported removable partial dentures (ISRPDs) are an effective treatment for partially edentulous patients. ISRPDs improve patients’ satisfaction and oral function to a greater extent than RPDs by improving denture stability and enhancing support. However, the effect of a type of direct retainer on displacement of the abutment teeth and dentures in ISRPDs remains unclear. Therefore, we made a resin mandibular model of unilateral mandibular distal-extension partial edentulism for mechanical simulation and compared the dynamic behavior of the abutment teeth and the denture base among different tooth-borne retainers with various rigidities for RPDs and ISRPDs. Methods A resin mandibular model for mechanical simulation that had unilateral mandibular distal-extension edentulism and was missing the first molar, second molar, first premolar, and second premolar, and a denture fabricated from the patient’s computed tomography images were used. Three types of direct retainers with different connecting rigidities were evaluated. The vertical displacement of the denture base and buccal and lingual sides and the mesial displacement of the abutment teeth were measured. Results Regardless of the rigidity of the direct retainers and loading positions, the displacement of the denture bases in the ISRPDs was significantly smaller than that in the RPDs (P < 0.001). There was no significant difference in vertical displacement of the denture bases among direct retainers with various connecting rigidities in the ISRPDs. Conversely, horizontal displacement of the abutment teeth in both the RPDs and ISRPDs tended to be larger with the cone crown telescope, which has high rigidity, than with the cast cingulum rest and wire clasp, which have much lower rigidities. Conclusion Our results suggested that cast cingulum rest and wire clasps as direct retainers are appropriate ISRPDs to minimize denture movement and suppress displacement of the remaining teeth in patients with unilateral mandibular distal-extension partial edentulism.


1934 ◽  
Vol 24 (4) ◽  
pp. 345-384 ◽  
Author(s):  
Vincent P. Gianella ◽  
Eugene Callaghan

Summary The Cedar Mountain, Nevada, earthquake took place at about 10h 10m 04s p.m., December 20, 1932. It was preceded by a foreshock noted locally and followed by thousands of aftershocks, which were reported as still continuing in January 1934. No lives were lost and there was very little damage. The earthquake originated in southwest central Nevada, east of Mina. A belt of rifts or faults in echelon lies in the valley between Gabbs Valley Range and Pilot Mountains on the west and Cedar Mountain and Paradise Range on the east. The length of this belt is thirty-eight miles in a northwesterly direction, and the width ranges from four to nine miles. The rifts consist of zones of fissures which commonly reveal vertical displacement and in a number of places show horizontal displacement. The length of the rifts ranges from a few hundred feet to nearly four miles, and the width may be as much as 400 feet. The actual as well as indicated horizontal displacement is represented by a relative southward movement of the east side of each rift. The echelon pattern of the rifts within the rift area indicates that the relative movement of the adjoining mountain masses is the same. The direction of relative horizontal movement corresponds to that along the east front of the Sierra Nevada at Owens Valley and on the San Andreas rift.


2014 ◽  
Vol 58 (8) ◽  
pp. 4404-4410 ◽  
Author(s):  
Carey D. Schlett ◽  
Eugene V. Millar ◽  
Katrina B. Crawford ◽  
Tianyuan Cui ◽  
Jeffrey B. Lanier ◽  
...  

ABSTRACTChlorhexidine has been increasingly utilized in outpatient settings to control methicillin-resistantStaphylococcus aureus(MRSA) outbreaks and as a component of programs for MRSA decolonization and prevention of skin and soft-tissue infections (SSTIs). The objective of this study was to determine the prevalence of chlorhexidine resistance in clinical and colonizing MRSA isolates obtained in the context of a community-based cluster-randomized controlled trial for SSTI prevention, during which 10,030 soldiers were issued chlorhexidine for body washing. We obtained epidemiological data on study participants and performed molecular analysis of MRSA isolates, including PCR assays for determinants of chlorhexidine resistance and high-level mupirocin resistance and pulsed-field gel electrophoresis (PFGE). During the study period, May 2010 to January 2012, we identified 720 MRSA isolates, of which 615 (85.4%) were available for molecular analysis, i.e., 341 clinical and 274 colonizing isolates. Overall, only 10 (1.6%) of 615 isolates were chlorhexidine resistant, including three from the chlorhexidine group and seven from nonchlorhexidine groups (P> 0.99). Five (1.5%) of the 341 clinical isolates and five (1.8%) of the 274 colonizing isolates harbored chlorhexidine resistance genes, and four (40%) of the 10 possessed genetic determinants for mupirocin resistance. All chlorhexidine-resistant isolates were USA300. The overall prevalence of chlorhexidine resistance in MRSA isolates obtained from our study participants was low. We found no association between extended chlorhexidine use and the prevalence of chlorhexidine-resistant MRSA isolates; however, continued surveillance is warranted, as this agent continues to be utilized for infection control and prevention efforts.


2019 ◽  
Vol 18 (3) ◽  
pp. 144-147
Author(s):  
Mary Rimbi ◽  
◽  
Immaculate Nakitende ◽  
Teopista Namujwiga ◽  
John Kellett ◽  
...  

Background: heart rates generated by pulse oximeters and electronic sphygmomanometers in acutely ill patients may not be the same as those recorded by ECG Methods: heart rates recorded by an oximeter and an electronic sphygmomanometer were compared with electrocardiogram (ECG) heart rates measured on acutely ill medical patients. Results: 1010 ECGs were performed on 217 patients while they were in the hospital. The bias between the oximeter and the ECG measured heart rate was -1.37 beats per minute (limits of agreement -22.6 to 19.9 beats per minute), and the bias between the sphygmomanometer and the ECG measured heart rate was -0.14 beats per minute (limits of agreement -22.2 to 21.9 beats per minute). Both devices failed to identify more than half the ECG recordings that awarded 3 NEWS points for heart rate. Conclusion: Heart rates of acutely ill patients are not reliably measured by pulse oximeter or electronic sphygmomanometers.


2021 ◽  
Vol 11 (16) ◽  
pp. 7577
Author(s):  
Lin Wu ◽  
Xiedong Zhang ◽  
Wei Wang ◽  
Xiancong Meng ◽  
Hong Guo

Train vibration from closely aligned adjacent tunnels could cause safety concerns, especially given the soaring size of the tunnel diameter. This paper established a two-dimensional discrete element model (DEM) of small (d = 6.2 m) and super-large (D = 15.2 m) diameter cross-river twin tunnels and discussed the dynamic characteristics of adjacent tunnels during the vibration of a train that runs through the tunnel at a speed of 120 km/h. Results in the D tunnel showed that the horizontal walls have the same horizontal displacement (DH) and the vertical walls have the same vertical displacement (DV). The stress state of the surroundings of the D tunnel is the decisive factor for DH, and the distance from the vibration point to the measurement point is the decisive factor for DV. Results in the comparison of the d and D tunnels showed that the D tunnel is more stable than the d tunnel with respect to two aspects: the time the tunnel reaches the equilibrium state and the vibration amplitude of the structure’s dynamic and static responses. The dynamic characteristic of the d and D tunnel is significantly different. This research is expected to guide the design and construction of large diameter twin tunnels.


2001 ◽  
Vol 34 (4) ◽  
pp. 1405
Author(s):  
Γ. Δ. ΔΑΝΑΜΟΣ ◽  
Ε. Λ. ΛΕΚΚΑΣ ◽  
Σ. Γ. ΛΟΖΙΟΣ

The Jan. 26, 2001, Ms=7.7 earthquake occurred in Gujarat region of W. India, which lies 200-400 Km away from the active plate boundary zone, between the Indian subcontinent and the Asian plate, along the India-Pakistan border and the Himalayan belt. An Ms=7.7±0.2 earthquake also occurred in the same region in 1819. A zone of co-seismic E-W surface ruptures, 30-40 Km long and 15-20 Km wide, observed near the epicentral area and seems to be associated with pre-existing reverse faults and thrust folds, which were partially reactivated during the recent earthquake. Except the reverse vertical displacement a significant right lateral displacement was also observed along these E-W surface ruptures. This Ms=7.7 seismic event has been also accompanied by a large scale flexural-slip folding, as the absence of significant co-seismic fault displacement and fault scarp shows. This type of compressional tectonic deformation is also confirmed by the focal mechanism of the earthquake and the seismo-tectonic "history" of the area. The NW-SE open cracks, also observed along the same zone, are associated with the right lateral horizontal displacement of the reactivated fault (or branch faults) and the development of local extensional stress field in the huge anticlinic hinges of the co-seismic flexural-slip folds. A large number of ground ruptures, failures and open cracks are also associated with extensive sand boils, liquefaction phenomena and lateral spreading.


2013 ◽  
Vol 405-408 ◽  
pp. 428-433
Author(s):  
Fu Yong Chu ◽  
Jun Gao Zhu

Abstract: The stress and deformation of rock-fill dam with asphalt concrete core wall founded on deep overburden is calculated and analyzed by Duncan E-ν model and double-yield-surface model through three-dimensional finite element method. The stress and deformation of dams in water storage period is compared by the two models, the results show that the deformation distribution of dam core via two different models are coincide one another. The horizontal displacement and vertical displacement of rock-fill dam with asphalt concrete core wall by double-yield-surface model is smaller than which by Duncan E-ν model in the period of water storage. Furthermore, the horizontal displacement and vertical displacement by double-yield-surface model, which are close to the practical test data through the deformation via two models are in good agreement. The analysis of core-wall stress via double-yield-surface model is more reasonable than the Duncan E-ν model. The analysis result of resisting hydraulic fracturing of core dams by DuncanE-ν model is coincide which of core dams by double-yield-surface model.


Sign in / Sign up

Export Citation Format

Share Document