scholarly journals Concentrated extract of Prunus mume fruit exerts dual effects in 3T3-L1 adipocytes by inhibiting adipogenesis and inducing beiging/browning

Author(s):  
Su Bu ◽  
Chunying Yuan ◽  
Fuliang Cao ◽  
Qifeng Xu ◽  
Yichun Zhang ◽  
...  

Background: The fruit Prunus mume has beneficial effects in the treatment of obesity and metabolic syndrome. However, its mechanism of action is unclear. Objective: We assessed the effect of a concentrated water extract of P. mume fruit (CEPM) on adipogenesis and beiging/browning in 3T3-L1 cells. Methods: The cell viability was determined by MTT assay. Lipid accumulation was assessed with Oil Red O (ORO) staining under different concentrations of CEPM. The effects of CEPM treatment during differentiation on beiging/browning and mitochondrial biogenesis in 3T3-L1 cells were investigated. Results: CEPM treatment suppressed differentiation and decreased lipid accumulation by downregulating the expression of key adipogenic genes, including PPARγ, C/EBPα, SREBP-1c, FAS, and perilipin A. In contrast, CEPM treatment increased the mitochondrial DNA (mtDNA) content and mRNA levels of mitochondrial biogenesis genes, including NAMPT, Nrf1, Nrf2, and CPT1α, and reduced reactive oxygen species levels. Importantly, CEPM increased the expression of brown/beige hallmark genes (Pgc-1α, Ucp1, Cidea, Cox7α1, Cox8b, Cd137, and Pdk-4), as well as proteins (UCP1, PGC-1α, NRF1, TBX1, and CPT1α). The high-performance liquid chromatography (HPLC) analysis reveals that CEPM contains mumefural, naringin, 5-HMF, citric acid, caffeic acid, and hesperidin. Conclusion: The first evidence we provided showed that CEPM has a dual role in 3T3-L1 cells inhibiting adipogenesis and promoting beiging/browning, and hence, could be a potential agent in the fight against obesity.

2015 ◽  
Vol 117 (suppl_1) ◽  
Author(s):  
Xianxiu Wan ◽  
Jianjun Wen ◽  
Koo Sue-jie

Chronic chagasic cardiomyopathy (CCM) is presented with ventricular hypertrophy and contractile dysfunction that can lead to heart failure. I have found that a substantial decline in mitochondrial biogenesis and SIRT1/PGC-1α activity ensue in chronic chagasic mice. It was evidenced by the decline in mitochondrial DNA content as well as mRNA levels of mitochondrial encoded genes and mtDNA replication machinery. Further, the activity of SIRT1 (required for PGC-1α activation) was decreased and associated with decreased nuclear levels of PGC-1-regulated NRF1 transcription factor in chagasic hearts. The mitochondrial size and number were also reduced in chagasic heart, determined by electron microscopy. Therefore, we hypothesized that enhancing the SIRT1/PGC-1α activity by SIRT1 agonist would improve heart function through activating mitochondrial biogenesis in Chagasic disease. Mice were infected with T. cruzi, and beginning at day 90 post-infection (pi), treated with resveratrol (SIRT1 agonist) or metformin (AMPK agonist, can enhance SIRT1 activity) for 21 days; and then heart function was monitored at 150 days pi. We found that treatment with resveratrol partially attenuated the heart dysfunction (stroke volume, cardiac output, ejection fraction, heart rate) and cardiac hypertrophy in chagasic mice. These benefits were associated with improved expression of the mitochondrial DNA encoded genes and mtDNA content though the expression of genes involved in mtDNA replication was not improved. Treatment with metformin was not significantly beneficial in improving the CCM outcomes. The partial beneficial effects of resveratrol could be due to inefficient activation of SIRT1 or delayed start of the treatment. We plan to treat mice with SIRT1 agonist SIRT1720 (10 fold more active than resveratrol) during the indeterminate phase of T. cruzi infection in next set of experiments. This study will improve our understanding of the molecular and immune mechanisms of chagasic heart disease and will provide a novel treatment for chronically-infected chagasic patients.


2021 ◽  
Vol 11 (16) ◽  
pp. 7679
Author(s):  
Jae Min Hwang ◽  
Mun-Hoe Lee ◽  
Jin-Hee Lee ◽  
Jong Hun Lee

Agastache rugosa, or Korean mint, is an herb used as a spice, food additive and traditional medicinal ingredient. It has desirable effects, such as its antibacterial, antifungal and antioxidant properties. A. rugosa contains many phenolic compounds studied for their various health benefits, with the primary components being tilianin. A. rugosa extract (ARE), which was extracted with ethanol and freeze-dried, contained 21.14 ± 0.15 mg/g of tilianin with a total polyphenol content of 38.11 ± 0.88 mg/g. Next, the antiadipogenic effect of A. rugosa and tilianin was clarified using 3T3-L1 cells, which differentiate into adipocytes and develop lipid droplets. 3T3-L1 cells were treated with ARE or tilianin and lipid accumulation (%) was calculated through oil red O staining. Tilianin elicited dose-dependent decrease in lipid accumulation (% of positive control) (30 μM 92.10 ± 1.19%; 50 μM 69.25 ± 1.78%; 70 μM 54.86 ± 1.76%; non-differentiation 18.10 ± 0.32%), assessed by oil-red-O staining, whereas ARE treatments caused consistent diminution in lipid accumulation regardless of dose (100 μM 86.90 ± 4.97%; 200 μM 87.25 ± 4.34%; 400 μM 88.54 ± 2.27%; non-differentiation 17.96 ± 1.30%), indicating that both compounds have anti-obesity effects on adipocytes. Treatment with ARE lowered the mRNA (PPARγ; C/EBPα; FABP4; SREBP1; ACC; FAS) and protein (PPARγ; C/EBPα; SREBP1) levels of adipogenesis and lipogenesis-related factors. Tilianin showed a greater effect on the mRNA levels compared with ARE. Thus, tilianin and ARE may have anti-adipogenic and anti-lipogenic effects on 3T3-L1 cells and be possible candidates of obesity-related supplements.


Molecules ◽  
2018 ◽  
Vol 23 (8) ◽  
pp. 1853 ◽  
Author(s):  
Mak-Soon Lee ◽  
Yangha Kim

Isorhamnetin (ISOR), 3-O-methylquercetin, is a naturally occurring flavonoid in many plants. It is a metabolite derived from quercetin and is known to exert beneficial effects on the prevention of obesity. However, the molecular mechanism of action involved in ISOR-mediated mitochondrial biogenesis, and AMP-activated protein kinase (AMPK) activation in 3T3-L1 cells remains unclear. The aim of this study was to determine whether ISOR affected mitochondrial biogenesis and AMPK activation, during 3T3-L1 adipocyte differentiation. Intracellular lipid and triglyceride accumulation, and glycerol-3-phosphate dehydrogenase (GPDH) activity decreased in ISOR-treated cells. The mRNA levels of adipogenic genes, such as the proliferator-activated receptor-γ (PPAR-γ), and adipocyte protein 2 (aP2), were inhibited by ISOR. In contrast, mRNA levels of mitochondrial genes, such as peroxisome proliferator-activated reporter gamma coactivator-1α (PGC-1α), nuclear respiratory factor (NRF)-1, transcription factor A (Tfam), and carnitine palmitoyl transferase-1α (CPT-1α), were all stimulated by ISOR treatment. Mitochondria DNA (mtDNA) copy number and AMPK activity were also stimulated by ISOR. The results suggested that the mitochondrial biogenic effect of ISOR in adipocytes might have been associated with stimulation of mitochondrial gene expression, mtDNA replication, and AMPK activation.


2019 ◽  
Vol 20 (5) ◽  
pp. 422-432 ◽  
Author(s):  
Yu-lin Tan ◽  
Han-xiao Ou ◽  
Min Zhang ◽  
Duo Gong ◽  
Zhen-wang Zhao ◽  
...  

Background: Tanshinone IIA (Tan IIA) and Omentin-1 have a protective role in the cardiovascular system. However, if and how Tan IIA and Omentin-1 regulate cholesterol metabolism in macrophages has not been fully elucidated. Objective: To investigate the possible mechanisms of Tan IIA and Omentin-1 on preventing macrophage cholesterol accumulation and atherosclerosis development. Methods: The effect of Tan IIA on the protein and mRNA levels of Omentin-1 and ATP-binding cassette transporter A1 (ABCA1) in macrophages was examined by Western blot and qRT-PCR assay, respectively. Cholesterol efflux was assessed by liquid scintillation counting (LSC). Cellular lipid droplet was measured by Oil Red O staining, and intracellular lipid content was detected by high performance liquid chromatography (HPLC). In addition, the serum lipid profile of apoE−/− mice was measured by enzymatic method. The size of atherosclerotic lesion areas and content of lipids and collagen in the aortic of apoE−/− mice were examined by Sudan IV, Oil-red O, and Masson staining, respectively. Results: Tan IIA up-regulated expression of Omentin-1 and ABCA1 in THP-1 macrophages, promoting ABCA1-mediated cholesterol efflux and consequently decreasing cellular lipid content. Consistently, Tan IIA increased reverse cholesterol transport in apoE−/− mice. Plasma levels of high-density lipoprotein cholesterol (HDL-C), ABCA1 expression and atherosclerotic plaque collagen content were increased while plasma levels of low-density lipoprotein cholesterol (LDL-C) and atherosclerotic plaque sizes were reduced in Tan IIA-treated apoE−/− mice. These beneficial effects were, however, essentially blocked by knockdown of Omentin-1. Conclusion: Our results revealed that Tan IIA promotes cholesterol efflux and ameliorates lipid accumulation in macrophages most likely via the Omentin-1/ABCA1 pathway, reducing the development of aortic atherosclerosis.


Author(s):  
Mitha K.V. ◽  
Saraswati Jaiswal Yadav ◽  
Ganaraja Bolumbu

Abstract Objectives Alcohol consumption causes several harmful effects on the organs, which is hugely understated. Many deformities occur in the fetus when pregnant mothers indulge in alcoholism. Alcohol is a known teratogen, hence organ formation, particularly development of parts brain critical for cognitive function may be affected. The oxidative brain damage also could contribute to reduced cognitive efficiency of brain exposed to alcohol. In this study, effect of Centella asiatica in relieving the oxidative brain damage in offspring of alcohol fed mother rats was evaluated. Methods In this study we fed alcohol (5 g/kg body weight, 30% w/v) to a group of pregnant Wistar rats during gestation period, and another group served as control. Four groups of rats (n = 6 each) were selected from the offspring of these mother rats. The groups were, control, positive (treated) control, untreated and treated from alcohol-fed mother. Their cognitive parameters were tested in water maze, shuttle box and compared. Further their oxidative status was evaluated by estimating malondialdehyde (MDA), protein carbonyl, total antioxidants and glutathione reductase (GSH) in hippocampus. Results The results suggested that there was significantly high cognitive performance in maze test and shuttle box memory retention in rats treated with C. asiatica water extract and the antioxidant levels were high in their hippocampus. Conclusions The outcome of the study suggested that C. asiatica produced beneficial effects in reversing the alcohol induced brain damage in pregnancy.


Foods ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 1282
Author(s):  
Ariuntsetseg Khurelchuluun ◽  
Osamu Uehara ◽  
Durga Paudel ◽  
Tetsuro Morikawa ◽  
Yutaka Kawano ◽  
...  

Background: Bee pollen (BP) has a broad range of beneficial effects on health. The aim of this study was to examine the effect of BP on the oral environment, including the microbiome and antimicrobial peptides. Methods: C57BL/6J mice were randomly divided into two groups: control and BP. The BP group was fed with a 5% BP diet for 1 month. Swabs from the oral and buccal mucosa and samples of the intestinal stool were collected. Genomic DNA was extracted and the microbiome was analyzed via 16S rRNA sequencing. Results: BP inhibited the growth of P. gingivalis at a concentration of >2.5%. The metagenomic study showed that the abundance of genus Lactococcus was significantly elevated in the oral and intestinal microbiomes of the BP group when compared to those of the control group. Significant alterations in alpha and beta diversity were observed between the oral microbiomes of the two groups. The mRNA levels of beta-defensin-2 and -3 were significantly upregulated in the buccal mucosa of the BP group. Conclusion: A BP diet may have a beneficial effect on oral and systemic health by modulating the bacterial flora and antimicrobial peptides of the oral cavity. Further investigations are needed to clarify how a BP diet affects overall human health.


Biomolecules ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 393
Author(s):  
Oliver Neuhaus ◽  
Wolfgang Köhler ◽  
Florian Then Bergh ◽  
Wolfgang Kristoferitsch ◽  
Jürgen Faiss ◽  
...  

Although fatigue is a common symptom in multiple sclerosis (MS), its pathomechanisms are incompletely understood. Glatiramer acetate (GA), an immunomodulatory agent approved for treatment of relapsing-remitting MS (RRMS), possesses unique mechanisms of action and has been shown to exhibit beneficial effects on MS fatigue. The objective of this study was to correlate clinical, neuropsychological, and immunological parameters in RRMS patients with fatigue before and during treatment with GA. In a prospective, open-label, multicenter trial, 30 patients with RRMS and fatigue were treated with GA for 12 months. Inclusion criterion was the presence of fatigue as one of the most frequent and disabling symptoms. Before and during treatment, fatigue was assessed using the Fatigue Severity Scale (FSS), the MS-FSS, and the Modified Fatigue Impact Scale (MFIS). In addition, fatigue and quality of life were assessed using the Visual Analog Scales (VAS). Laboratory assessments included screening of 188 parameters using real-time PCR microarrays followed by further analysis of several cytokines, chemokines, and neurotrophic factors. Fatigue self-assessments were completed in 25 patients. After 12 months of treatment with GA, 13 of these patients improved in all three scales (with the most prominent effects on the MFIS), whereas 5 patients had deteriorated. The remaining 7 patients exhibited inconsistent effects within the three scales. Fatigue and overall quality of life had improved, as assessed via VAS. Laboratory assessments revealed heterogeneous mRNA levels of cytokines, chemokines, and neurotrophic factors. In conclusion, we were not able to correlate clinical and molecular effects of GA in patients with RRMS and fatigue.


Molecules ◽  
2021 ◽  
Vol 26 (13) ◽  
pp. 3977
Author(s):  
Shaoyun Wang ◽  
Xiaozhu Sun ◽  
Shuo An ◽  
Fang Sang ◽  
Yunli Zhao ◽  
...  

Polygoni Multiflori Radix Praeparata (PMRP), as the processed product of tuberous roots of Polygonum multiflorum Thunb., is one of the most famous traditional Chinese medicines, with a long history. However, in recent years, liver adverse reactions linked to PMRP have been frequently reported. Our work attempted to investigate the chemical constituents of PMRP for clinical research and safe medication. In this study, an effective and rapid method was established to separate and characterize the constituents in PMRP by combining ultra-high performance liquid chromatography with hybrid quadrupole-orbitrap mass spectrometry (UHPLC-Q-Exactive Orbitrap-MS). Based on the accurate mass measurements for molecular and characteristic fragment ions, a total of 103 compounds, including 24 anthraquinones, 21 stilbenes, 15 phenolic acids, 14 flavones, and 29 other compounds were identified or tentatively characterized. Forty-eight compounds were tentatively characterized from PMRP for the first time, and their fragmentation behaviors were summarized. There were 101 components in PMRP ethanol extract (PMRPE) and 91 components in PMRP water extract (PMRPW). Simultaneously, the peak areas of several potential xenobiotic components were compared in the detection, which showed that PMRPE has a higher content of anthraquinones and stilbenes. The obtained results can be used in pharmacological and toxicological research and provided useful information for further in vitro and in vivo studies.


Author(s):  
Inese Mierina ◽  
Rasma Seržaneļ ◽  
Maija Strele ◽  
Jūlija Moskaļuka ◽  
Elga Ivdre ◽  
...  

Abstract Various extracts of Japanese quince (Chaenomeles japonica) seeds obtained using organic solvents were studied for their polyphenol content and antiradical activity. It was established that petroleum ether, hexane, ethyl acetate, acetone, as well as toluene and chloroform extracts, in comparison to synthetic antioxidant butylated hydroxytoluene (BHT), demonstrate better (or comparable) activity against 2,2-diphenyl-1-picrylhydrazyl (DPPH). Methods for detoxification of seeds, meals and press-cakes are proposed. Phenolic composition of different extracts (80% ethanol, 70% acetone), both acid and alkali hydrolysates of seeds, as well as seed oil methanol/water extract were analysed by means of high performance liquid chromatography (HPLC): chlorogenic acid was found for the first time in seed extract; protocatechuic acid predominated in all extracts. The content of other major phenolic acids was detected; it was found that seed oil contains syringic acid. It was determined that Japanese quince seeds contain almost ten times more α -tocopherol than barley grain. Due to the presence of α -tocopherol and phenolic compounds, seed oil and lipophilic extracts of seeds could serve as antioxidants.


2015 ◽  
Vol 45 (4) ◽  
pp. 704-710 ◽  
Author(s):  
Melânia Lazzari Rigo ◽  
Andressa Minussi Pereira Dau ◽  
Werner Giehl Glanzner ◽  
Manoel Martins ◽  
Renato Zanella ◽  
...  

The main objective of this study was to detect the steroidogenic effects of Ang II in bovine theca cells in vitro. Bovine theca cells were obtained from follicles (larger than 10mm of diameter) collected from a local abattoir and submitted to different treatments in a sequence of experiments. In experiment 1, CYP17A1 mRNA profile was evaluated in LH- (10ng ml-1) and Ang II-treated (0.1µM) theca cells. In experiment 2, a dose-response effect of Ang II (0.001; 0.1 e 10µM) plus insulin (100ng ml-1) and LH (100ng ml-1) was evaluated on steroidogenesis of bovine theca cells. Experiment 3 explored the effects of saralasin (an antagonist of Ang II receptors) on steroid production and steroidogenic enzymes regulation in theca cells. After 24 hours, culture media from experiments 2 and 3 was collected to evaluate testosterone and androstenedione levels by High-Performance Liquid Chromatography. In parallel, mRNA levels of key steroidogenic enzymes (HSD3B2, CYP11A1, CYP17A1) and STAR were assessed by RT-PCR. There was no difference in testosterone and androstenedione production between treated and controls groups, as well as in mRNA levels of the evaluated genes. In conclusion, the results suggest that Ang II does not regulate steroidogenesis in bovine theca cells


Sign in / Sign up

Export Citation Format

Share Document