scholarly journals Pengaruh variasi pembagian jumlah anoda dengan pola horisontal terhadap laju korosi baja SS400 pada media air laut

2018 ◽  
Vol 8 (1) ◽  
Author(s):  
Ahmad Faisol ◽  
S. Sumarji ◽  
G. Djatisukamto

Sacrificial anode protection is one type of corrosion protection used to inhibit corrosion rate. The sacrificial anode protection works by utilizing the potential difference between anode and cathode. This research aims to determine the effect of variation in the distribution of quantities and distribution of sacrificial anode aluminum to SS400 steel corrosion rate. The method of calculating the corrosion rate used is the weight loss test. The results of this test indicate that the more uniform distribution of the anode on the surface of the cathode the better the resulting protection will be. The best protection is produced by 4 pieces of sacrificial anode size of 0,5 x 4 cm with an average rate of corrosion rate of 0,1067 mm/year. Protection with 2 pieces of sacrificial anode size 1 x 4 cm resulted in corrosion rate with average value 0,1462 mm/year, while on protection of 1 victim anode with size 2 x 4 cm can produce protection with average value of corrosion rate 0,1677 mm/year. Equivalent distribution of numbers and distributed anodes can narrow the distance between the anodes so that the value of the material's resitivity is smaller and the electrons can be distributed evenly over the entire cathode surface.The corrosion that occurs in SS400 steel is a kind of uniform corrosion. It is seen from the size of the cavity that occurs on each side of the specimen after the immersion process.

2018 ◽  
Vol 8 (1) ◽  
pp. 14
Author(s):  
A. Faisol ◽  
S. Sumarji ◽  
G. Djatisukamto

Sacrificial anode protection is one type of corrosion protection used to inhibit corrosion rate. The sacrificial anode protection works by utilizing the potential difference between anode and cathode. This research aims to determine the effect of variation in the distribution of quantities and distribution of sacrificial anode aluminum to SS400 steel corrosion rate. The method of calculating the corrosion rate used is the weight loss test. The results of this test indicate that the more uniform distribution of the anode on the surface of the cathode the better the resulting protection will be. The best protection is produced by 4 pieces of sacrificial anode size of 0,5 x 4 cm with an average rate of corrosion rate of 0,1067 mm/year. Protection with 2 pieces of sacrificial anode size 1 x 4 cm resulted in corrosion rate with average value 0,1462 mm/year, while on protection of 1 victim anode with size 2 x 4 cm can produce protection with average value of corrosion rate 0,1677 mm/year. Equivalent distribution of numbers and distributed anodes can narrow the distance between the anodes so that the value of the material's resitivity is smaller and the electrons can be distributed evenly over the entire cathode surface.The corrosion that occurs in SS400 steel is a kind of uniform corrosion. It is seen from the size of the cavity that occurs on each side of the specimen after the immersion process.


2021 ◽  
Vol 13 (6) ◽  
pp. 3444
Author(s):  
Zheng Li ◽  
Hao Jin ◽  
Shuo Yu

Segment reinforcement corrosion can cause bearing-capacity degradation of shield tunnel, which is unsafe for the metro operation. Therefore, a three-dimensional computational model was proposed in this paper to study the corrosion rate and rust expansion form of segment reinforcement by the combined action of soil loading, chloride ion and stray current. The results show that the arch waist segment steel corrosion rate in the middle is larger than the ends. The rust expansion form of segment reinforcement appears be an eccentric circle. The radius size and circular center are related to the non-uniform corrosion coefficient and the maximum corrosion current density.


2011 ◽  
Vol 255-260 ◽  
pp. 514-518
Author(s):  
Zheng Yi Kong ◽  
Shan Hua Xu ◽  
Yu Sheng Chen

Because of the complexity of corrosion, the law of uniform corrosion and localized corrosion is still not clear,so it is difficult to assess their impact on the structure safety. In order to differ them and find their own law, we obtain a lot of corrosion specimens by ways of constant temperature and humidity, and then detect the size of corrosion pits by roughness tester. After that, the method for calculating the thickness of uniform corrosion and localized corrosion is proposed. Then the method is used to analyze the experiment data. The result indicates the thickness of uniform corrosion and localized corrosion all increase with the rate of corrosion, and they all show a power relationship with corrosion rate, so it will provide a basis for distinguishing them in safety assessment.


ROTOR ◽  
2017 ◽  
Vol 10 (1) ◽  
pp. 13
Author(s):  
Naufan Arviansyah ◽  
Sumarji Sumarji ◽  
Digdo Listyadi Setyawan

This research have a purpuse to know corrosion rate in pipe X52 and A53 at oil sludge media caused BS and W. Corrosion is a damage of metal that occurs because reaction between metal with environtment and produce unwanted of corrosion product. Pipe X52 and A53 is a type of low carbon steel that use for fluid transportation system in industry. Oil sludge is a sediment of crude oil from main gathering storage and containing variouses elements. Oil sludge have a one of element is Basic Sediment and Water that is can make corrosion happen to distribution pipes. Measuring Method used in this research is weight loss method. The result of corrosion rate in Oil Sludge media containing 30,17% BS and W for pipe A53 is 1,64 x 10-2 mmpy and the result for pipa X52 is 2,47 x 10-2 mmpy. The result of corrosion rate in Oil Sludge media containing 60,67% BS and W for pipe A53 is 2,12 x 10-2 mmpy and for pipe X52 the result is 3,13 x 10-2 mmpy. The result of this research showed pipe A53 have more resistance than pipe X52. The corrosion is classified as uniform corrosion. Keywords : A53, Weight Loss, Oil Sludge, X52.


2018 ◽  
Vol 791 ◽  
pp. 83-87
Author(s):  
Femiana Gapsari ◽  
Putu Hadi Setyarini ◽  
Andita N.F. Ganda

The corrosion inhibition efficiency of Rhizophora acipulata(RA) extract was investigated for API 5L Steel corrosion in 3.5% NaCl using weight loss and polarization method. Fourier Transform Infra-Red (FTIR) was used toanalyze the characteristics of extract RA functional groups. The weight loss and polarization result indicated that extract RA inhibited API 5L steel corrosion rate. Based on the polarization result, the inhibition efficiency reached up 97.52% with addition 100ppm of RA extract.


Carbon steel is arguably one of the most efficient, reliable and safer kind of steel used in petroleum and gas industry for production, distribution and transmission of products. Acetic acid (HAc), is also one of the impurities in oil and gas during transportation from the well sites to the refineries. It is formed in the formation water, which also present in oil and gas production and transportation processes. Acetic acid aids corrosion in pipelines and as a result causes environmental degradation. It has been observed that high concentration of HAc increases the rate of corrosion of carbon steel in CO2 environment. Corrosion slows down production of oil and gas and thereby reduces revenue. In this work, a comparative study and analysis of carbon steel corrosion in the presence of HAc was carried out at 25oC and 80oC in CO2 saturated environment. Weight loss and surface analysis methods (XRD, EDX and SEM) were used to characterize the corrosion layers of the carbon steel samples at different conditions. The weight loss results show that the corrosion rate increased initially with the increase in the concentration of HAc and attained a maximum, and then gradually decreased. At 25oC with 500ppm of HAc, the corrosion rate is 1.35 mm/yr, and 1.80 mm/yr when 1000ppm of HAc was added to the solution. At 80oC and 500ppm HAc, the corrosion rate was 1.80 mm/yr and 2.70 mm/yr with 1000ppm of HAc. A further increase was observed at 3.45 mm/yr when 2500ppm of HAc was added to the system. This increase in corrosion rate is attributed to increase in temperature as increased temperature increases the rate of all reactions. The XRD analysis confirmed that the iron is formed in the absence of HAc while siderite (FeCO3), which is an ore of iron is observed on the materials with HAc. The SEM and EDX results confirmed that a fairly dense material of FeCO3 was formed in the absence of HAc and the layers became porous on addition of HAc to the solution. Key Words: Corrosion, Acetic acid, Carbon steel, CO2, Environment


Author(s):  
I. G. A. Arwati ◽  
T. Izzati ◽  
Z. Arifin

<p>This study aimed to analyze the effect of adding to the rate of steel corrosion inhibitor and comparing the rate of corrosion on steel pipes with and without inhibitors.The testing conducted in Puspitek shown that the most optimum inhibitor contained in the addition of 1% due to changes in the price of the original acidity (pH) from 7.30 to 11.80. This shows the increasing of pH occurred sizable value and followed by the declines of potential value (Ecorr) -700.53 mV to -512.39 mV. Thus, the  decreasing accured to the current corrosion value (Icorr) from 2.71 μA/cm<sup>2</sup> to 0.31 μA/cm<sup>2</sup>, while the corrosion rate of carbon steel St 41 decreased most effective after adding 1% Na<sub>2</sub>CO<sub>3</sub> as inhibitor, the corrosion rate is changed from 1.2437 mpy to 0.1427 mpy.</p>


2014 ◽  
Vol 896 ◽  
pp. 245-248 ◽  
Author(s):  
Candra Kurniawan ◽  
Hayati M.A. Sholihat ◽  
Kemas Ahmad Zaini Thosin ◽  
Muljadi ◽  
Prijo Sardjono

Despite of its excellence magnetic quality, one of the critical properties of PrFeB based permanent magnet is a low corrosion resistance so it can be oxidized easily which can reduce its magnetic properties. In this study, Nickel coating has been performed for bonded PrFeB magnet by the electroplating method using Nickel-Watts bath-type as the electrolyte to improve the corrosion resistance. The varying amount of the electrolyte compounds used to have the optimized composition indicated by the corrosion resistance measurement. The solution composition used was NiSO4 (230-380 g/L), NiCl2 (30-60 g/L), and H3BO3 (30 and 45 g/L) with a fixed value of other parameters. Characterization used including the immersion corrosion test, microstructure analysis, and magnetic properties. Based on the corrosion rate measurement, the highest corrosion resistant of Nickel coated PrFeB magnet achieved from the electrolyte composition of NiSO4: NiCl2: H3BO3 = 380: 60: 30 g/L with a plating time and current density (J) of 60 minutes and 40 mA/cm2 respectively. The corrosion rate data showed that the Nickel metal coating can improve the corrosion resistance of bonded PrFeB magnet up to 29 times than of the substrate. The SEM images showed that the thickness of the Nickel coating on the optimum electrolyte composition was in average value of 35.1 µm. The overall samples has a magnetic remanence value (Br) reached ≥ 6 kG, so it has enough properties to be applied in devices such as generators and electric motors.


2010 ◽  
Vol 36 ◽  
pp. 176-181
Author(s):  
Xian Feng He ◽  
Shou Gang Zhao ◽  
Yuan Bao Leng

The corrosion of steel will have a bad impact on the safety of reinforced concrete structure. In severe cases, it may even be disastrous. In order to understand the impact of steel corrosion on the structure, tests are carried out to study corrosion and expansion rules of steel bars as well as the impact rules of corrosion on bond force between steel and concrete. The results show that wet and salty environment will result in steel corrosion; relatively minor corrosion will not cause expansion cracks of protection layers; when steel rust to a certain extent, it will cause cracks along the protection layer; when there exists minor corrosion in steel and the protection layer does not have expansion cracks, the bond force is still large and rapidly decreases as the corrosion rate increases.


1988 ◽  
Vol 135 (6) ◽  
pp. 1333-1337 ◽  
Author(s):  
John N. Murray ◽  
Patrick J. Moran

Sign in / Sign up

Export Citation Format

Share Document