scholarly journals Analisis emisi gas buang dan daya sepeda motor pada volume silinder diperkecil

2018 ◽  
Vol 8 (1) ◽  
pp. 8
Author(s):  
I.M. Mara ◽  
I.M.A. Sayoga ◽  
I.G.N.K. Yudhyadi ◽  
I.M. Nuarsa

This research aims to determine the effect of variations diameter pistons on exhaust emissions and fuel consumption. This research used a gasoline engine single-cylinder four-stroke  with variations in cylinder volume 100 cc, 90 cc, 60 cc and engine rotation  1500 rpm, 2500 rpm, 3500 rpm, 4500 rpm, 6000 rpm. Data was collected in transmission N, 1, 2, 3, and 4 each of the three repetitions for each round engine rotation, using a gas analyzer 2400 ultra 4/5 IM Hanatech brand for exhaust emission of CO and HC. Based on data analysis, it can be concluded that with decreasing diameter of piston up to 60 cc can reduce exhaust emissions, especially CO, HC and fuel consumption. The highest HC exhaust emissions was in 100 cc cylinder volume that is equal to 514.33 ppm while the lowest HC emissions obtained in 60 cc cylinder volume at 49.67 ppm. The highest CO emission was obtained on 100 cc cylinder  by 4.64% volume, while the lowest CO emission was obtained on 60 cc cylinder by 0.31% volume. The highest CO2 emissions obtained in 60 cc cylinder amounted to 17.60% volume, while the lowest CO2 emission obtained at 100 cc cylinder  amounted to 8.37%  volume, and the highest fuel consumption obtained in 100 cc cylinder  at 0.65 kg/h, and the lowest fuel consumption obtained in 60 cc cylinder  by 0.06 kg/h.

2018 ◽  
Vol 8 (1) ◽  
Author(s):  
I Made Mara ◽  
I Made Adi Sayoga ◽  
IGNK Yudhyadi ◽  
I Made Nuarsa

This research aims to determine the effect of variations diameter pistons on exhaust emissions and fuel consumption. This research used a gasoline engine single-cylinder four-stroke  with variations in cylinder volume 100 cc, 90 cc, 60 cc and engine rotation  1500 rpm, 2500 rpm, 3500 rpm, 4500 rpm, 6000 rpm. Data was collected in transmission N, 1, 2, 3, and 4 each of the three repetitions for each round engine rotation, using a gas analyzer 2400 ultra 4/5 IM Hanatech brand for exhaust emission of CO and HC. Based on data analysis, it can be concluded that with decreasing diameter of piston up to 60 cc can reduce exhaust emissions, especially CO, HC and fuel consumption. The highest HC exhaust emissions was in 100 cc cylinder volume that is equal to 514.33 ppm while the lowest HC emissions obtained in 60 cc cylinder volume at 49.67 ppm. The highest CO emission was obtained on 100 cc cylinder  by 4.64% volume, while the lowest CO emission was obtained on 60 cc cylinder by 0.31% volume. The highest CO2 emissions obtained in 60 cc cylinder amounted to 17.60% volume, while the lowest CO2 emission obtained at 100 cc cylinder  amounted to 8.37%  volume, and the highest fuel consumption obtained in 100 cc cylinder  at 0.65 kg/h, and the lowest fuel consumption obtained in 60 cc cylinder  by 0.06 kg/h.


2015 ◽  
Vol 76 (9) ◽  
Author(s):  
Nik Rosli Abdullah ◽  
Hazimi Ismail ◽  
Zeno Michael ◽  
Asiah Ab. Rahim ◽  
Hazim Sharudin

Improving fuel consumption with lower exhaust emissions give more focused to all car manufactures. A higher engine performance with lower exhaust emissions requires a complete mixing process resulted in ultra-lean high combustion efficiency. Air intake temperature is one of the alternative strategies to improve fuel consumption and reduced exhaust emissions. This is due to the cold air is denser and contain higher oxygen availability. Air intake temperature will affect to the oxygen concentration in the charged air that influence the combustion process through ignition delay and fuel burning rate. The objective of this experiment is to investigate the effects of air intake temperature to the fuel consumption and exhaust emission at variation of engine speeds and constant load by using 1.6L gasoline engine. Air intake temperature was changed from 20 °C to 30 °C. The DaTAQ Pro V2 software was used to measure the engine fuel consumption while gas analyzer (MRU Gas Analyzer) was used to measure the exhaust emission such as Unburned hydrocarbons (UHCs) and carbon monoxide (CO). The results showed that fuel consumption, UHCs and CO emissions increased with the increase of air intake temperature. The increase of air intake temperature resulted in advanced and shorter combustion duration. Higher oxygen concentration at lower air intake temperature leads to the complete mixing process and complete combustion.  Therefore, the experimental results can be concluded that the lower air intake temperature resulted in improved fuel consumption and reduced UHCs and CO emissions.


2021 ◽  
Vol 5 (1) ◽  
pp. 102-109
Author(s):  
Bahtiar Wilantara Bahtiar ◽  
Hamid Nasrullah ◽  
Atip Suwarno ◽  
Ahmad Nurkholis ◽  
R Chandra ◽  
...  

This study aims to determine the effect of modification of the Honda Tiger 2000 on exhaust emissions of CO and HC. The method used is to modify the carburettor venturi piston and replace the rocker arm with a roller rocker arm. The exhaust emission test used a gas analyzer type SUKYOUNG SY-GA 401. The object of the study was a Honda Tiger 2000 motorcycle. The results showed that modification of the Honda Tiger 2000 motorcycle at idle, 1000 rpm, 1500 rpm, and 2000 rpm increased CO emissions but reduced HC emissions. Based on comparing the motorcycle emission threshold values for manufacture ≤ 2010, namely CO emissions exceeding 5.5% and HC emissions less than 2400 ppm.  Pertamax Turbo fuel consumption is more efficient than Pertalite with a distance ratio of 45 km requiring 1L Pertamax Turbo and 1.4L Petalite.


2013 ◽  
Vol 390 ◽  
pp. 343-349 ◽  
Author(s):  
Jerzy Merkisz ◽  
Pawel Fuc ◽  
Piotr Lijewski ◽  
Andrzej Ziolkowski

The paper describes the influence of the start-stop system on the exhaust emissions and fuel consumption. The tests were performed for two vehicles. The first one was a vehicle designed specifically to operate in city conditions. It was fitted with a gasoline engine of the displacement of 0.9 dm3 and maximum power output of 63.7 kW. The other vehicle was an SUV (Sports Utility Vehicle) fitted with a diesel engine of the displacement of 3.0 dm3. The measurements of the exhaust emission were carried out on the same route under actual traffic conditions. For the tests a portable exhaust emissions analyzer from the PEMS group SEMTECH DS was used (PEMS Portable Emissions Measurement System).


Author(s):  
Syahrul Huda ◽  
Wawan Purwanto ◽  
Budi Utomo Wisesa

This research examines the effect of installing a Turbo Cyclone on a 4 stroke gasoline engine on fuel consumption and exhaust emissions. This research is a quantitative study using experimental research methods. The 4 stroke petrol engine used is the Yamaha Jupiter MX 135 cc. The data were processed in several stages of analysis using the mean formula, fuel consumption, the percentage formula, and comparing the results of data analysis from each treatment. From the results of data analysis, it was found that the installation of the Turbo Cyclone had an effect on fuel consumption and exhaust emissions from the 4 stroke engine. The best effect is obtained from the installation of the Turbo Cyclone after the carburetor, fuel consumption shows a decrease of up to 8%, exhaust emissions show a decrease in HC levels by 9% and an increase in CO2 levels by 1%.  Penelitian ini mambahas pengaruh pemasangan Turbo Cyclone pada mesin bensin 4 Tak terhadap konsumsi bahan bakar dan emisi gas buang. Penelitian ini  merupakan penelitian kuantitatif dengan metode penelitian eksperimen. Mesin bensin 4 Tak yang digunakan adalah Yamaha Jupiter MX 135 cc. Data diolah dengan beberapa tahapan analisis menggunakan rumus  mean, konsumsi bahan bakar,  rumus persentase, dan membandingkan hasil analisis data dari masing-masing perlakuan. Dari hasil analisis data didapatkan adanya pengaruh dari pemasangan Turbo Cyclone terhadap konsumsi bahan bakar dan emisi gas buang dari mesin 4 Tak tersebut. Pengaruh yang paling baik didapat dari pemasangan Turbo Cyclone setelah karburator, konsumsi bahan bakar menunjukkan penurunan mencapai 8%, emisi gas buang menunjukkan penurunaan kadar HC sebesar 9% dan peningkatan kadar CO2 sebesar 1%.


JTAM ROTARY ◽  
2021 ◽  
Vol 3 (2) ◽  
Author(s):  
Dias Ahmad Fajri ◽  
Abdul Ghofur

Catalytic Converter adalah pengubah (modifier) yang menggunakan media yang memiliki katalis, dimana media tersebut diharapkan dapat membantu atau mempercepat proses perubahan zat (reaksi kimia) sehingga gas seperti CO dapat dioksidasi menjadi CO2, media katalis kimia pada suhu tertentu, tanpa perubahan atau penggunaan oleh reaksi itu sendiri. Catalytic converter berbahan arang kayu ulin untuk emisi gas buang dan konsumsi bahan bakar. Jenis penelitian ini adalah penelitian eksperimen. Pengujian yang dilakukan pada penelitian ini ada 2 yaitu knalpot tanpa catalytic converter dan knalpot dengan catalytic converter berbahan arang kayu ulin dengan variasi rpm 1500, 2500, 3500. Pengujian emisi gas buang menggunakan alat yang disebut gas analyzer. Berdasarkan hasil penelitian dapat disimpulkan bahwa catalytic converter berbahan arang kayu ulin dengan diameter lubang 20 mm mampu mereduksi emisi CO dengan reduksi sebesar 52,23%, dan emisi HC lubang berdiameter 20 mm dengan jumlah 85,63. Catalytic Converter is a converter (modifier)that uses media that has a catalyst, where the media is expected to help or accelerate the process of changing substances (chemical reactions) so that gases such as CO can be oxidized to CO2, chemical catalyst media at a certain temperature, without change or use by the reaction itself. Catalytic converters made from ironwood charcoal to exhaust emissions and fuel consumption. This type of research is experimental research. There are 2 tests of this research, namely exhaust without catalytic converter and exhaust with catalytic converter made from ironwood charcoal with variations in rpm 1500, 2500, 3500. Examination of exhaust emissions using a device called a gas analyzer. Based on the results of the study it can be concluded that catalytic converters made from ironwood charcoal with a hole diameter of 20 mm were able to reduce CO emissions with a reduction of 52.23%, and HC emissions of a hole diameter of 20 mm with an amount of 85.63,


2020 ◽  
Vol 182 (3) ◽  
pp. 54-58
Author(s):  
Andrzej Ziółkowski ◽  
Paweł Fuć ◽  
Piotr Lijewski ◽  
Łukasz Rymaniak ◽  
Paweł Daszkiewicz ◽  
...  

Road transport holds for the largest share in the freight transport sector in Europe. This work is carried out by heavy vehicles of various types. It is assumed that, in principle, transport should take place on the main road connections, such as motorways or national roads. Their share in the polish road infrastructure is not dominant. Rural and communal roads roads are the most prevalent. This fact formed the basis of the exhaust emissions and fuel consumption tests of heavy vehicles in real operating conditions. A set of vehicles (truck tractor with a semi-trailer) meeting the Euro V emission norm, transporting a load of 24,800 kg, was selected for the tests. The research was carried out on an non-urban route, the test route length was 22 km. A mobile Semtech DS instrument was used, which was used to measure the exhaust emissions. Based on the obtained results, the emission characteristics were determined in relation to the operating parameters of the vehicles drive system. Road emission, specific emission and fuel consumption values were also calculated.


Author(s):  
E. Movahednejad ◽  
F. Ommi ◽  
M. Hosseinalipour ◽  
O. Samimi

For spark ignition engines, the fuel-air mixture preparation process is known to have a significant influence on engine performance and exhaust emissions. In this paper, an experimental study is made to characterize the spray characteristics of an injector with multi-disc nozzle used in the engine. The distributions of the droplet size and velocity and volume flux were characterized by a PDA system. Also a model of a 4 cylinder multi-point fuel injection engine was prepared using a fluid dynamics code. By this code one-dimensional, unsteady, multiphase flow in the intake port has been modeled to study the mixture formation process in the intake port. Also, one-dimensional air flow and wall fuel film flow and a two-dimensional fuel droplet flow have been modeled, including the effects of in-cylinder mixture back flows into the port. The accuracy of model was verified using experimental results of the engine testing showing good agreement between the model and the real engine. As a result, predictions are obtained that provide a detailed picture of the air-fuel mixture properties along the intake port. A comparison was made on engine performance and exhaust emission in different fuel injection timing for 2600 rpm and different loads. According to the present investigation, optimum injection timing for different engine operating conditions was found.


Author(s):  
Syahruji Syahruji ◽  
Abdul Ghofur

The purpose of this study was to determine the use of brass plate catalysts in the exhaust channel of Suzuki Shogun Axelo 125 in 2010. This study used an experimental method. The population in this study was a Suzuki Shogun Axelo 125 motorbike in 2010, the research data was a number showing gas content remove CO2, CO, HC. This research was carried out in the banjarmasin environment office using a gas analyzer and was also conducted at the Banjarmasin plug and play workshop by using a dynamometer. The technique used in data collection was the variation in rpm and number of plates. (1) The results of this study are: Forming a catalytic converter with plate variation 8 (eight) so that the level of CO2 emission reduction is maximum of 52,7%, the level of CO emission reduction is 82.23%, and the level of HC emission reduction is 74,08%. The form of catalytic converter with plate variation 6 (six), the maximum CO2 emission reduction level is 29,56%, the level of CO emission reduction is 49.32%, and the level of HC emission reduction is 82,92%. (2) By using catalytic converters with plate variation 8 (eight) to produce power of 8.045 hp and torque of 8,833 n / m and for catalytic converters with plate variation 6 (six) producing power of 7.661 hp and torque of 8.493 n / m.


Day to day increase in air pollution is one of the serious issues nowadays. One of the main contributors is automobile emissions. It contains gases like carbon dioxide, carbon monoxide, hydrocarbon, nitrogen oxides, and particular matters. In order to address such issues, this paper is focused on the reduction of emissions by modifying the design of an exhaust after-treatment device. The analysis is carried out on a 4-stroke single-cylinder 149cc FZ-S BS4 bike two-wheeler gasoline engine.CO and HC emissions absorbed by an aqueous solution having different TDS of aqua 90ppm RO water, 1000ppm Municipality water, and 10000ppm seawater. Such aqueous solution contains calcium powder and activated carbon in 10:0.5:0.5, 10:1:1 and 10:2:2 in proportion respectively. An optimum solution derived which having a mixture of 10:1:1 proportion having 10000ppm seawater is derived which shows reduction in CO by 50% and HC emission by 40% as compare conventional muffler exhaust emission. The IoT device is used with the MQ-7 sensor to measure CO emission from a modified device and data obtained are compared with PUC (Pollution under control) certified center. This research is to optimize emission from the existing gasoline engine, from April 2017 BS4 is implemented in INDIA nationwide & BS6 will be going to implement by 2020. From April 2017 manufacturer are not allowed to build new engines below BS4 standard but customer those who are having an older version of engines are not having any effect of BS4 & their engines are still emitting more pollution than the current emission norms. More than 100 million of twowheeler engines were sold in between Feb‘06- March’17. This study aims to provide a solution for such engines not from the manufacturer side but from the consumer side to upgrade their vehicle to satisfy future emission norms so that human health will be less affected by such emissions.


Sign in / Sign up

Export Citation Format

Share Document