scholarly journals Pengenalan Pola Tulisan Tangan Suku Kata Aksara Sasak Menggunakan Metode Moment Invariant dan Support Vector Machine

Author(s):  
Riska Yulianti ◽  
I Gede Pasek Suta Wijaya ◽  
Fitri Bimantoro

 The research of Javanese and Balinese ancient script have been done by some researches. However, the researches still have problems, such as image scaling, noise reduction and image transformation. This research implemented moment invariant and support vector machine to solve these problems especially on Sasak ancient script. The input data used in this research was 2700 handwritten Sasak ancient script. The testing was done to know the effect of thinning and the number of feature by using zoning on the classification performance. Accuracy is used as performance indicator. The highest average accuracy is 89.76%, on the second scenario, the average accuracy obtained is 92.52%. 

Symmetry ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 212
Author(s):  
Yu-Wei Liu ◽  
Huan Feng ◽  
Heng-Yi Li ◽  
Ling-Ling Li

Accurate prediction of photovoltaic power is conducive to the application of clean energy and sustainable development. An improved whale algorithm is proposed to optimize the Support Vector Machine model. The characteristic of the model is that it needs less training data to symmetrically adapt to the prediction conditions of different weather, and has high prediction accuracy in different weather conditions. This study aims to (1) select light intensity, ambient temperature and relative humidity, which are strictly related to photovoltaic output power as the input data; (2) apply wavelet soft threshold denoising to preprocess input data to reduce the noise contained in input data to symmetrically enhance the adaptability of the prediction model in different weather conditions; (3) improve the whale algorithm by using tent chaotic mapping, nonlinear disturbance and differential evolution algorithm; (4) apply the improved whale algorithm to optimize the Support Vector Machine model in order to improve the prediction accuracy of the prediction model. The experiment proves that the short-term prediction model of photovoltaic power based on symmetry concept achieves ideal accuracy in different weather. The systematic method for output power prediction of renewable energy is conductive to reducing the workload of predicting the output power and to promoting the application of clean energy and sustainable development.


2011 ◽  
Vol 181-182 ◽  
pp. 830-835
Author(s):  
Min Song Li

Latent Semantic Indexing(LSI) is an effective feature extraction method which can capture the underlying latent semantic structure between words in documents. However, it is probably not the most appropriate for text categorization to use the method to select feature subspace, since the method orders extracted features according to their variance,not the classification power. We proposed a method based on support vector machine to extract features and select a Latent Semantic Indexing that be suited for classification. Experimental results indicate that the method improves classification performance with more compact representation.


2021 ◽  
Vol 40 (1) ◽  
pp. 1481-1494
Author(s):  
Geng Deng ◽  
Yaoguo Xie ◽  
Xindong Wang ◽  
Qiang Fu

Many classification problems contain shape information from input features, such as monotonic, convex, and concave. In this research, we propose a new classifier, called Shape-Restricted Support Vector Machine (SR-SVM), which takes the component-wise shape information to enhance classification accuracy. There exists vast research literature on monotonic classification covering monotonic or ordinal shapes. Our proposed classifier extends to handle convex and concave types of features, and combinations of these types. While standard SVM uses linear separating hyperplanes, our novel SR-SVM essentially constructs non-parametric and nonlinear separating planes subject to component-wise shape restrictions. We formulate SR-SVM classifier as a convex optimization problem and solve it using an active-set algorithm. The approach applies basis function expansions on the input and effectively utilizes the standard SVM solver. We illustrate our methodology using simulation and real world examples, and show that SR-SVM improves the classification performance with additional shape information of input.


2016 ◽  
Vol 79 (1) ◽  
Author(s):  
Suhail Khokhar ◽  
A. A. Mohd Zin ◽  
M. A. Bhayo ◽  
A. S. Mokhtar

The monitoring of power quality (PQ) disturbances in a systematic and automated way is an important issue to prevent detrimental effects on power system. The development of new methods for the automatic recognition of single and hybrid PQ disturbances is at present a major concern. This paper presents a combined approach of wavelet transform based support vector machine (WT-SVM) for the automatic classification of single and hybrid PQ disturbances. The proposed approach is applied by using synthetic models of various single and hybrid PQ signals. The suitable features of the PQ waveforms were first extracted by using discrete wavelet transform. Then SVM classifies the type of PQ disturbances based on these features. The classification performance of the proposed algorithm is also compared with wavelet based radial basis function neural network, probabilistic neural network and feed-forward neural network. The experimental results show that the recognition rate of the proposed WT-SVM based classification system is more accurate and much better than the other classifiers. 


2021 ◽  
Vol 15 ◽  
Author(s):  
Justine Staal ◽  
Francesco Mattace-Raso ◽  
Hennie A. M. Daniels ◽  
Johannes van der Steen ◽  
Johan J. M. Pel

BackgroundResearch into Alzheimer’s disease has shifted toward the identification of minimally invasive and less time-consuming modalities to define preclinical stages of Alzheimer’s disease.MethodHere, we propose visuomotor network dysfunctions as a potential biomarker in AD and its prodromal stage, mild cognitive impairment with underlying the Alzheimer’s disease pathology. The functionality of this network was tested in terms of timing, accuracy, and speed with goal-directed eye-hand tasks. The predictive power was determined by comparing the classification performance of a zero-rule algorithm (baseline), a decision tree, a support vector machine, and a neural network using functional parameters to classify controls without cognitive disorders, mild cognitive impaired patients, and Alzheimer’s disease patients.ResultsFair to good classification was achieved between controls and patients, controls and mild cognitive impaired patients, and between controls and Alzheimer’s disease patients with the support vector machine (77–82% accuracy, 57–93% sensitivity, 63–90% specificity, 0.74–0.78 area under the curve). Classification between mild cognitive impaired patients and Alzheimer’s disease patients was poor, as no algorithm outperformed the baseline (63% accuracy, 0% sensitivity, 100% specificity, 0.50 area under the curve).Comparison with Existing Method(s)The classification performance found in the present study is comparable to that of the existing CSF and MRI biomarkers.ConclusionThe data suggest that visuomotor network dysfunctions have potential in biomarker research and the proposed eye-hand tasks could add to existing tests to form a clear definition of the preclinical phenotype of AD.


2020 ◽  
Vol 202 ◽  
pp. 15004
Author(s):  
Aditya Tegar Satria ◽  
Mustafid ◽  
Dinar Mutiara Kusumo Nugraheni

Nowadays, the utilization of Internet of Things (IoT) is commonly used in the tourism industry, including aviation, where passengers of flight services can rate their satisfaction levels towards the product and service they use by writing their reviews in the form of text-based data on many popular websites. These passenger reviews are collections of potential big data and can be analyzed in order to extract meaningful informations. Some text mining algorithms are already in common use, including the Bayes formula and Support Vector Machine methods. This research proposes an implementation of the Bayes and SVM methods where these algorithms will operate independently yet integrated with other modules such as input data, text pre-processing and shows output result concisely in one single information system. The proposed system was successfully delivered 1000 documents of passenger reviews as input data, then after implemented the pre-processing method, the Bayes formula was used to classify the document reviews into 5 categories, including plane condition, flight comfort, staff service, food and entertainment, and price. While simultanously, the positive and negative sentiment contained in the review document was analyzed with SVM method and shows the accuracy score of 83.6% for a training to testing set ratio of 50:50, while 82.75% accuracy for the 60:40 ratio, and 83.3% accuracy for the 70:30 ratio. This research shows that two different text mining algorithms can be implemented simultaneously in a effective and efficient way, while still providing an accurate and satisfying performance results in one integrated information system.


2018 ◽  
Vol 29 (9) ◽  
pp. 2027-2039 ◽  
Author(s):  
Zhangjie Chen ◽  
Ya Wang

This article presents an infrared–ultrasonic sensor fusion approach for support vector machine–based fall detection, often required by elderly healthcare. Its detection algorithms and performance evaluation are detailed. The location, size, and temperature profile of the user can be estimated based on a novel sensory fusion algorithm. Different feature sets of the support vector machine–based machine learning algorithm are analyzed and their impact on fall detection accuracy is evaluated and compared empirically. Experiments study three non-fall activities, standing, sitting, and stooping, and two fall actions, forward falling and sideway falling, to simulate daily activities of the elderly. Fall detection accuracy studies are performed based on discretely and continuously (closer to reality) recorded experimental data, respectively. For the discrete data recording, an average accuracy of 92.2% is achieved when the stand-alone Grid-EYE is used and the accuracy is increased to 96.7% when sensor fusion is used. For the continuous data recording (180 training sets, 60 test sets at each distance), an average accuracy less than 70.0% is achieved when the stand-alone Grid-EYE is used and the accuracy is increased to around 90.3% after sensor fusion. New features will be explored in the next step to further increase detection accuracy.


Energies ◽  
2020 ◽  
Vol 13 (19) ◽  
pp. 5152
Author(s):  
Conor McKinnon ◽  
James Carroll ◽  
Alasdair McDonald ◽  
Sofia Koukoura ◽  
David Infield ◽  
...  

Anomaly detection for wind turbine condition monitoring is an active area of research within the wind energy operations and maintenance (O & M) community. In this paper three models were compared for multi-megawatt operational wind turbine SCADA data. The models used for comparison were One-Class Support Vector Machine (OCSVM), Isolation Forest (IF), and Elliptical Envelope (EE). Each of these were compared for the same fault, and tested under various different data configurations. IF and EE have not previously been used for fault detection for wind turbines, and OCSVM has not been used for SCADA data. This paper presents a novel method of condition monitoring that only requires two months of data per turbine. These months were separated by a year, the first being healthy and the second unhealthy. The number of anomalies is compared, with a greater number in the unhealthy month being considered correct. It was found that for accuracy IF and OCSVM had similar performances in both training regimes presented. OCSVM performed better for generic training, and IF performed better for specific training. Overall, IF and OCSVM had an average accuracy of 82% for all configurations considered, compared to 77% for EE.


Mathematics ◽  
2020 ◽  
Vol 8 (8) ◽  
pp. 1263
Author(s):  
Chih-Yao Chang ◽  
Kuo-Ping Lin

Classification problems are very important issues in real enterprises. In the patent infringement issue, accurate classification could help enterprises to understand court decisions to avoid patent infringement. However, the general classification method does not perform well in the patent infringement problem because there are too many complex variables. Therefore, this study attempts to develop a classification method, the support vector machine with new fuzzy selection (SVMFS), to judge the infringement of patent rights. The raw data are divided into training and testing sets. However, the data quality of the training set is not easy to evaluate. Effective data quality management requires a structural core that can support data operations. This study adopts new fuzzy selection based on membership values, which are generated from fuzzy c-means clustering, to select appropriate data to enhance the classification performance of the support vector machine (SVM). An empirical example based on the SVMFS shows that the proposed SVMFS can obtain a superior accuracy rate. Moreover, the new fuzzy selection also verifies that it can effectively select the training dataset.


Sign in / Sign up

Export Citation Format

Share Document