scholarly journals THE EFFECT OF TEMPERATURE ON THE PERFORMANCE OF ACTIVATED CARBON OVER CATALYTIC CRACKING OF CRUDE PALM OIL

2018 ◽  
Vol 5 (1) ◽  
Author(s):  
Nazarudin Nazarudin ◽  
Ulyarti Ulyarti ◽  
Oky Alfernando ◽  
Ira Galih ◽  
Susilawati Susilawati ◽  
...  

This research was carried out to investigate the effect of temperature in carbon production on its performance in the catalystic cracking of CPO to fuel.  The carbon was produced using palm shell at 2 different temperatures (450 and 550oC).  The cracking of CPO was carried out with and without the active carbon catalyst.  The result showed that the use of catalyst increase the conversion of both gas and liquid conversion.  The use of higher temperature in the production of active carbon catalyst increased the performance of the catalyst, in particular, for the liquid conversion. Keywords :Activated carbon, catalyst, catalytic cracking, crude palm oil

BioResources ◽  
2020 ◽  
Vol 16 (1) ◽  
pp. 77-95
Author(s):  
Siqiao Yang ◽  
Haichao Li

Activated carbon, graphite, and GO/gelatin composite films were prepared by the blending method. The properties of composites were characterized by tensile strength (TS), elongation at break (EB), water vapour permeability (WVP), water-absorption ability, contact angle, scanning electron microscopy (SEM), and moisture at different temperatures. The properties of GO/gelatin composite films were better when each of three kinds of carbon materials were used as reinforcement phases and added into the matrix gelatin. The results showed that EB and TS of GO/gelatin composite films were both excellent. The moisture of GO/gelatin composite films was greater than the others. SEM micrographs showed that GO had better compatibility and dispersibility with gelatin than activated carbon and graphite. The water absorption of GO/gelatin composite films were low, at 15 °C and 25 °C, and the WVP was low at 35 °C. The WVP of GO/gelatin composite films was lower than the others at different temperatures. The contact angle of GO/gelatin composite films was larger than the others.


2017 ◽  
Vol 13 (01) ◽  
Author(s):  
Silvio Alex Pereira Mota ◽  
Andréia De Andrade Mancio ◽  
Luiz Eduardo Pizarro Borges ◽  
Nélio Teixeira Machado

1970 ◽  
Vol 5 (1) ◽  
Author(s):  
Sulaiman Al-Zuhair, Mirghani I. Ahmed and Yousif A. Abakr

This paper discusses the apparent viscosity of crude palm oil, using rotary viscometer, under different boundary conditions. It was experimentally shown that the apparent viscosity of palm oil drops with increasing of the shear rate and the temperature.  However, the effect of temperature on the viscosity tends to fade at temperatures beyond 80 oC.  A correlation between the apparent viscosity of crude palm oil and the operating conditions was developed. This correlation can be used in design of crude palm oil settlers and in determining the optimum operating conditions.Key Words:  Crude palm oil, apparent viscosity, shear rate, modelling, separation 


2016 ◽  
Vol 5 (1) ◽  
pp. 52-57
Author(s):  
Irvan ◽  
Olyvia Putri Wardhani ◽  
Nurul Aini ◽  
Iriany

Crude palm oil (CPO) is the richest natural source of carotenoids which gives the reddish-orange color in crude palm oil. The reddish color in  unprocessed palm oil is disliked by consumer. This research is aimed to adsorb the β–carotene from the CPO using activated carbon, then the kinetics, isotherm models and thermodynamics data of the adsorption process were obtained. The main materials used in this research were CPO and activated carbon. The observed parameters were final concentration  and the amounts of adsorbed β–carotene in activated carbon. The adsorption process was conducted by mixing the adsorbent with CPO with the variation of adsorbent: CPO (w/w) ratio = 1 : 3; 1 : 4; 1 : 5 and 1 : 6 with mixing  speed 120 rpm and the temperature of 40, 50 and 60 oC. The sample of CPO and activated carbon was analyzed at every 2 minutes until the equilibrium was achieved. The final concentration of the unadsorbed β–carotene was analyzed using UV-Vis spectrophotometer. The results showed that the more CPO used in the process, the lower the adsorption percentage. The higher the adsorption temperature, the higher  adsorption percentage. Moreover, the maximum adsorption percentage was 95.108%  obtained at ratio 1 : 3 and T = 60 oC. The adsorption isotherm model which fit with the β–carotene adsorption at T = 60 oC was Langmuir model with the correlation coefficient of 0.959. The adsorption kinetics model which fit with the β–carotene adsorption was the second order kinetics model with the correlation coefficient of 0.998. The value of free energy Gibbs (ΔG) = -24,482.484 ; -24,708.059 and -24,933.634 J/mol for each temperature respectively, value of entropy changes (ΔS) = 22.557 J/mol K, and value of enthalpy changes (ΔH) = -17,421.987 J/mol.


2020 ◽  
Vol 9 (1) ◽  
pp. 107-112 ◽  
Author(s):  
I. Istadi ◽  
Teguh Riyanto ◽  
Luqman Buchori ◽  
Didi Dwi Anggoro ◽  
Roni Ade Saputra ◽  
...  

Plasma-assisted catalytic cracking is an attractive method for producing biofuels from vegetable oil. This paper studied the effect of reactor temperature on the performance of plasma-assisted catalytic cracking of palm oil into biofuels. The cracking process was conducted in a Dielectric Barrier Discharge (DBD)-type plasma reactor with the presence of spent RFCC catalyst. The reactor temperature was varied at 400, 450, and 500 ºC. The liquid fuel product was analyzed using a gas chromatography-mass spectrometry (GC-MS) to determine the compositions. Result showed that the presenceof plasma and catalytic role can enhance the reactor performance so that the selectivity of the short-chain hydrocarbon produced increases. The selectivity of gasoline, kerosene, and diesel range fuels over the plasma-catalytic reactor were 16.43%, 52.74% and 21.25%, respectively, while the selectivity of gasoline, kerosene and diesel range fuels over a conventional fixed bed reactor was 12.07%, 39.07%, and 45.11%, respectively. The increasing reactor temperature led to enhanced catalytic role of cracking reaction,particularly directing the reaction to the shorter hydrocarbon range. The reactor temperature dependence on the liquid product components distribution over the plasma-catalytic reactor was also studied. The aromatic and oxygenated compounds increased with the reactor temperature.©2020. CBIORE-IJRED. All rights reserved


2014 ◽  
Vol 110 ◽  
pp. 1-11 ◽  
Author(s):  
S.A.P. da Mota ◽  
A.A. Mancio ◽  
D.E.L. Lhamas ◽  
D.H. de Abreu ◽  
M.S. da Silva ◽  
...  

2016 ◽  
Vol 91 ◽  
pp. 32-43 ◽  
Author(s):  
A.A. Mancio ◽  
K.M.B. da Costa ◽  
C.C. Ferreira ◽  
M.C. Santos ◽  
D.E.L. Lhamas ◽  
...  

2020 ◽  
Vol 35 (1) ◽  
pp. 25-33 ◽  
Author(s):  
Magnus Heldin ◽  
Urban Wiklund

AbstractGroundwood pulping is a process that employs large machines, making them difficult to use in research. Lab scale grinders exist, but even though they are smaller, the sizes of the grinding stones or segments make them cumbersome to exchange and tailor. This study presents a method and an apparatus for investigating the detailed mechanisms and the energy requirements behind the fibre separation process. A well-defined grinding tool was used at three different temperatures to demonstrate that the equipment can differentiate levels of energy consumption and defibration rates, confirming the well-known fact that a higher temperature facilitates defibration. It is also shown how the equipment can be used to study the influence of grinding parameters, exemplified by the effect of temperature on the way fibres are separated and the character of the produced fibres. A key feature of the equipment is the use and evaluation of small grinding surfaces, more readily designed, produced, evaluated and studied. This reduces both the cost and time necessary for testing and evaluating. At the same time, a technique to produce well defined grinding surfaces was employed, which is necessary for repeatability and robust testing, not achievable with traditional grinding stones.


Sign in / Sign up

Export Citation Format

Share Document