scholarly journals ANALISIS KOMPOSISI SERBUK GERGAJI TERHADAP KONDUKTIVITAS HIDROLIK PIPA MORTARI IRIGASI TETES BAWAH PERMUKAAN TANAH (Analysis of Sawdust Ratio on Hydraulic Conductivity in Subsurface Mortari Pipe of Drip Irrigation )

2018 ◽  
Vol 6 (1) ◽  
pp. 39-52
Author(s):  
Lalu Muhammad Ariandi ◽  
Guyup Mahardhian Dwi Putra ◽  
Sirajuddin Haji Abdullah

Mortari emitter of sawdust (SG) can solve problem faced by farmers in dryland on irrigating their land. Aim of this research was to design an emitter by determining its mixture ratio and thickness. This research used experimental method by conducting experiment in laboratory. Observed parameters to determine water discharge were flow velocity, hydraulic conductivity value, coefficient of variation, and coefficient of uniformity. Ratio of cement, sand and sawdust to made sawdust (SG) mortari emitter were varied, i.e. P1 (1:2:2); P2 (2:1:3); P3 (2:4:4); P4 (2:2:2); and P5 (2:3:1). Result showed that the hydraulic conductivity could be classified as very low since K < 0.0036 cm/hour. The water discharge, flow velocity, and coefficient of uniformity were decreased in every reservoir elevation. Sawdust (SG) mortar emitter of P5 had the highest seeping ability and P3 had the lowest. The coefficient of uniformity (CU) value was 78,74%-80.64%. The use of Sawdust (SG) mortar emitter can be adjusted to the water discharge required by any plant type. The P3 emitter is suitable for plant which requires low water discharge and the P5 emitter is suitable for the high one. Keywords: water discharge, SG mortar emitter, hydraulic conductivity   ABSTRAK Emiter mortari serbuk gergaji (SG) dapat memecahkan masalah yang dihadapi para petani lahan kering dalam mengairi lahannya. Tujuan dilakukan penelitian ini adalah dapat merancang sebuah emiter dengan menentukan komposisi dan ketebalan emiter. Metode yang digunakan dalam penelitian ini adalah metode eksperimental dengan percobaan laboratorium. Parameter untuk menjawab tujuan penelitian adalah mencari nilai debit aliran yang dapat dihasilkan emiter mortari SG dengan menentukan kecepatan aliran, nilai konduktivitas hidrolik, koefisien variasi dan koefisien keseragaman. Emiter mortari SG dalam pengujian dilakukan dengan mencampurkan semen, pasir, dan serbuk gergaji masing-masing dengan 5 perbandingan, yaitu P1 (1:2:2); P2 (2:1:3); P3 (2:4:4); P4 (2:2:2); dan P5 (2:3:1). Nilai konduktivitas hidrolik didapatkan hasil pengkelasan dalam kategori sangat rendah karena memiliki nilai K<0,0036 cm/jam. Debit aliran, kecepatan aliran, dan koefisien keseragaman mengalami penurunan setiap ketinggian reservoir. Dimana emiter mortari SG dengan perlakuan P5 memiliki kemampuan merembeskan air dengan nilai tertinggi dan P3 pada emiter dengan kemampuan terendah. Nilai koefisien keseragaman pada emiter mortari SG terdapat keragaman dengan nilai CU sebesar 78,74%-80,64 %. Penggunaan emiter mortari SG dapat disesuaikan dengan jumlah kebutuhan debit air yang dibutuhkan oleh jenis tanaman. Emiter P3 baik digunakan pada tanaman dengan debit air rendah dan emiter P5 baik untuk tanaman dengan debit air tinggi. Kata kunci: debit aliran, emiter mortari SG, konduktivitas hidrolik

Author(s):  
Anatoly Kusher

The reliability of water flow measurement in irrigational canals depends on the measurement method and design features of the flow-measuring structure and the upstream flow velocity profile. The flow velocity profile is a function of the channel geometry and wall roughness. The article presents the study results of the influence of the upstream flow velocity profile on the discharge measurement accuracy. For this, the physical and numerical modeling of two structures was carried out: a critical depth flume and a hydrometric overfall in a rectangular channel. According to the data of numerical simulation of the critical depth flume with a uniform and parabolic (1/7) velocity profile in the upstream channel, the values of water discharge differ very little from the experimental values in the laboratory model with a similar geometry (δ < 2 %). In contrast to the critical depth flume, a change in the velocity profile only due to an increase in the height of the bottom roughness by 3 mm causes a decrease of the overfall discharge coefficient by 4…5 %. According to the results of the numerical and physical modeling, it was found that an increase of backwater by hydrometric structure reduces the influence of the upstream flow velocity profile and increases the reliability of water flow measurements.


2018 ◽  
Vol 5 (01) ◽  
Author(s):  
TAPAN K. KHURA ◽  
H. L. KUSHWAHA ◽  
SATISH D LANDE ◽  
PKSAHOO . ◽  
INDRA L . KUSHWAHA

Floriculture is an age-old farming activity in India having immense potential for generating selfemployment and income to farmers. However, the cost of cultivation of flower is high as compared to cereal crop. Level of mechanization for different field operations is one but foremost reason for the higher cost of cultivation. As most of the Indian farmers are marginal and small, a need for manually operated gladiolus planter was felt. The geometric properties of gladiolus corm were determined for designing the seed metering system and seed hopper of the planter. The planter was evaluated in the field when pulled by two persons as a power source and guided by a person. The coefficient of variation and highest deviation from the mean spacing was observed as 12.93% and 2.65cm respectively. The maximum coefficient of uniformity of 90.59% was observed for a nominal corm spacing of 15cm at 0.56 kmh-1 forward speed. An average MISS percentage was observed as 2.65 and 2.25 for nominal corm spacing of 15 and 20 cm. The multiple index was zero for two levels corm spacing and forward speed of operation. The QFI was found in the range of 97.2 and 97.9 percent. The average field capacity of the planter was observed as 0.02 hah-1.The average draft requirement of the planter was found as 821 ± 50.3 N.


2021 ◽  
Author(s):  
Liang Chen ◽  
Yu Wan ◽  
Jian-Jian He ◽  
Chun-Mu Luo ◽  
Shu-fa Yan ◽  
...  

Abstract Seepage-induced piping erosion is observed in many geotechnical structures. This paper studies the piping mechanism of gap-graded soils during the whole piping erosion failure process under a supercritical hydraulic gradient. We define the supercritical ratio Ri and study the change in the parameters such as the flow velocity, hydraulic conductivity, and fine particle loss with Ri. Under steady flow, a formula for determining the flow velocity state of the sample with Ri according to the fine particle content and relative density of the sample was proposed; during the piping failure process, the influence of Rimax on the rate at which the flow velocity and hydraulic conductivity of the sample increase as Ri decreases was greater than that of the initial relative density and the initial fine particle content of the sample. Under unsteady flow, a larger initial relative density corresponds to a smaller amplitude of increase in the average value of the peak flow velocity with increasing Ri. Compared with the test under steady flow, the flow velocity under unsteady flow would experience abrupt changes. The relative position of the trend line L of the flow velocity varying with Ri under unsteady flow and the fixed peak water head height point A under steady flow were related to the relative density of the sample.


2018 ◽  
Vol 12 (10) ◽  
pp. 195 ◽  
Author(s):  
Sutrisno . ◽  
Firdaus RS ◽  
Zainuri A ◽  
Sigit Iswahyudi ◽  
Setyawan Bekti Wibowo

Performance analysis and visualization of canard and fuselage effects on flow patterns around an SBTF fighter model have been conducted. An SBTF fighter model with an experimental method in a water tunnel would easily reveal visually the vortex dynamics phenomenon that occurred. Testing has been done, with some form of non-canard and canard aircraft in a water tunnel, on vortex dynamics and aerodynamic power on the aircraft model. The stream demonstration used a fluid speed of 0.1 m/s and Reynolds number 6.577x103 on a 1:110 scale model and measured using dye injection method with a print ink type with a mixture ratio of 1:8. The result of the research using GAMA water tunnel showed the aerodynamic force and vortex dynamics phenomenon that happened on the model aircraft. The research on the benefits of the canard is also done by examining the performance and the flow visualization of an SBTF fighter without fuselage, with the symmetrical plane and with the regular fuselage in a water tunnel. The results showed that the use of canard affected the lift, drag, and flow pattern around the wings. The use of canard can enhance the lift of the plane and function to delay the stall by restoring the flow above the wing which should have experienced turbulence back into laminar so that the fighter can maneuver to a higher angle of attack (AoA) without stalling. It is identified that canard and fuselage play significant roles on the design of a fighter. The design choice of the fuselage and the employment of canard are fundamental to support the ability of maneuver and agility of the fighter.


2019 ◽  
Vol 31 (2) ◽  
Author(s):  
Olorunwa Eric Omofunmi ◽  
Oluwaseun Ayodele Ilesanmi ◽  
Toluwalase Orisabinone

Experiment was carried out in the department of Agricultural and Bioresources Engineering, during the period of August to October, 2017. The hydraulic performance of a developed drip irrigation system was assessed. The experimental work was conducted on field with irrigated field area of 7 m x 3 m and lateral spacing was 0.35 m. Sixty (60) hospital drip sets (given sets) were used for the experiment as improved emitters. Volumetric method was used to determine application rate (PR) and emitters discharge. The emission uniformity, emitter flow variation, co-efficient of uniformity and co-efficient of variation were determined accordance with the equations described by the American Society of Agricultural Engineering (ASAE). Soil chemical properties were determined accordance with the American Public Health Association (APHA). The findings revealed that the soil in the area is classified as sand clay loam and normal soil. Results indicated that the mean and standard deviation of the emitters were 9.639 L/hr and 0.07 L/hr respectively. There were no emitters clogging. The emitter flow variation was 2.5 % and less than 10 % which was desirable range, while coefficient of variation was 0.07 and less than 0.11 which was marginal. The application rate was 17 mm hr-1 which was within the recommended range of 15 – 25 mm hr-1. The emission uniformity and coefficient of uniformity were 99.4% and 99.2% respectively, which shows that the system was well-designed. This finding indicated that hospital drip sets proved to the high quality. Therefore, it can be used as standard emitter.


2015 ◽  
Vol 802 ◽  
pp. 634-639 ◽  
Author(s):  
Mohd Nordin Adlan ◽  
Mohamad Razip Selamat ◽  
Siti Zahirah Othman

For a developing country such as Malaysia, riverbank/bed filtration (RBF) technology is still new and only few efforts have been made to understand the RBF mechanism and processes. Soil characteristics play important roles in determining the water quality and the ability of water to be abstracted from the wells during RBF process. A research has been carried out to identify the characteristic of riverbank soil at different layers in the pumping well (PW) borehole at Kota Lama Kiri, Kuala Kangsar, Perak, Malaysia. Soil samples were collected during the development of PW for RBF application. The maximum depth of PW was 8.50 metre. The soil samples were transported to Geotechnical Engineering Laboratory, School of Civil Engineering, Universiti Sains Malaysia and the properties were determined by a series of laboratory test. Soil particle size distribution (PSD) and hydraulic conductivity were obtained from sieve analyses and constant head test with reference to BS 1377: Part 1-9;2:1990. Laboratory results show that the value of Cu(coefficient of uniformity) for the soil samples within the borehole of PW was found to be within the range of 2.00 to 10.00 while the value of Cc(coefficient of gradation) lies in the ranges of 0.06-1.19. The One Way Analyses of Variance test was performed using Minitab statistical packages and the results indicate that the p-value was 0.996, where there was no significance difference between the mean sizes of soil samples within the PW. The hydraulic conductivity, k for PW ranges between 0.10-0.91 cm/s. Soil samples from depth 6.00-7.00 metres has the highest hydraulic conductivity, which is 0.91 cm/s. The overall well production from the pumping test was found 112.10 m3/hr.


Author(s):  
Douglas Sanchez ◽  
Juan E. Salazar

This paper presents numerical simulation of the water flow through the radial gates of the 2,280 MW Caruchi Dam, in southern Venezuela, and its relation to the vibration of the dam’s spillways and adjacent Control Building. The study is conducted as a contribution in determining the source of vibration of the fore mentioned structures in the case of gates opening above the normal values of up to 5 m, which occur when a larger water discharge is required in order to maintain an adequate level of the reservoir during the rainy season. The aim of the study was to find the pressure distribution and velocity profiles of the discharge flow through one of the dam’s radial gates and determine critical (reduced) velocities that may result in flow-induced vibration of the gates, as they were deemed to be the source of vibration of the whole set of structures in the first place. For this purpose, a commercially available FEM code was used. Three-dimensional CFD models were developed to simulate behavior of the flow when being released to the spillways, for opening values of 2, 5, 10 and 14 m, including the effect of the spillways’ deflectors. Modal analyses of the gate were performed, to take into account natural vibration frequencies in the determination of its critical velocities. After comparison of the gate’s critical velocities and velocity values from the CFD simulations, it is fair to say that the discharge flow does not directly induce vibration on the gates but rather on the spillways’ structure. This conclusion disregards flow through the gates as triggering the vibration phenomena which gave origin to this project, and puts the emphasis now on studying water flow effects on vibration in the spillway which, if not corrected on time, may ultimately lead to its catastrophic failure.


2014 ◽  
Vol 12 (1) ◽  
Author(s):  
Muamar Khadafi ◽  
Ernawan Setyono

STUDI EVALUASI DAN PERENCANAAN SISTEM JARINGANDRAINASE KECAMATAN ROGOJAMPI KABUPATENBANYUWANGIMuamar Khadafi1, Ernawan Setyono21&2Jurusan Teknik Sipil Fakultas Teknik – Universitas Muhammadiyah MalangAlamat korespondensi : Jalan Raya Tlogomas 246 Malang 65144ABSTRACTParts of the eastern part of the island of Java there is a district in the district called banyuwangi.The condition of the existing drainage system in the sub-district Rogojampi banyuwangi can say isinadequate to accommodate the construction of both the discharge flow from the waste comesfrom household or storm water discharge exists as hydrological impacts that occur in the regiontersabut. As a result, many districts Rogojampi often encounter serious problems due to standingwater is often the case in several sections of the area especially during the rainy season arrives. Soit is important to evaluate the channel capacity and planning of the new drainage system.Based on the evaluation results can be known that there are several sections of the channelwere not able to hold back the flood discharge stage biennial (two-year Q), so that the necessary replanningthe channel cross section. It provides a new drainage plan is also required to reduce thepool of water when it rains. It also required some supporting buildings culvert drainage system tominimize area genagnanKey Word ; Drainage, Discharge, Normalisation, Planing, Evaluasition


2019 ◽  
Vol 3 (2) ◽  
pp. 71
Author(s):  
Muhammad Marzuky Saleh ◽  
Edi Widodo

Pump is a device used to move fluid from one place to another through the pipe media as a channel. The pump has 2 important components in its performance, namely: Impeller and pump house (casing). When the pump cannot meet the required capacity it can use series and parallel pump circuits to increase it. When moving the fluid to a high surface or high pressure it will have the specifications of the head and discharge. Fluid flow is a liquid that flows in a pipe. In flow there is fluid pressure and also flow type. There are 3 flow types, namely laminer, transition, turbulent. To reduce turbulence in the flow can be used Tube bundle which is a device consisting of several pipes that are tied together that are attached to a cross section in the pipe. This research was conducted in 4 testing stages, namely series circuit with additional tube bundle, series circuit without additional tube bundle, parallel circuit with additional tube bundle, parallel circuit without additional tube bundle. Each test takes fluid pressure, discharge, flow type. From the results of this study it was found that the parallel circuit pump with an additional tube bundle produces fluid pressure, discharge, flow velocity smaller than the series circuit, whereas when without additional the parallel tube pump bundle produces a fluid pressure, discharge, flow velocity greater than the circuit series, while for the flow type of this study is turbulent flow.


2018 ◽  
Vol 22 (2) ◽  
pp. 1285-1298 ◽  
Author(s):  
Yassin Elamri ◽  
Bruno Cheviron ◽  
Annabelle Mange ◽  
Cyril Dejean ◽  
François Liron ◽  
...  

Abstract. Agrivoltaism is the association of agricultural and photovoltaic energy production on the same land area, coping with the increasing pressure on land use and water resources while delivering clean and renewable energy. However, the solar panels located above the cultivated plots also have a seemingly yes unexplored effect on rain redistribution, sheltering large parts of the plot but redirecting concentrated fluxes on a few locations. The spatial heterogeneity in water amounts observed on the ground is high in the general case; its dynamical patterns are directly attributable to the mobile panels through their geometrical characteristics (dimensions, height, coverage percentage) and the strategies selected to rotate them around their support tube. A coefficient of variation is used to measure this spatial heterogeneity and to compare it with the coefficient of uniformity that classically describes the efficiency of irrigation systems. A rain redistribution model (AVrain) was derived from literature elements and theoretical grounds and then validated from experiments in both field and controlled conditions. AVrain simulates the effective rain amounts on the plot from a few forcing data (rainfall, wind velocity and direction) and thus allows real-time strategies that consist in operating the panels so as to limit the rain interception mainly responsible for the spatial heterogeneities. Such avoidance strategies resulted in a sharp decrease in the coefficient of variation, e.g. 0.22 vs. 2.13 for panels held flat during one of the monitored rain events, which is a fairly good uniformity score for irrigation specialists. Finally, the water amounts predicted by AVrain were used as inputs to Hydrus-2D for a brief exploratory study on the impact of the presence of solar panels on rain redistribution at shallow depths within soils: similar, more diffuse patterns were simulated and were coherent with field measurements.


Sign in / Sign up

Export Citation Format

Share Document