scholarly journals Effect of Recycled Waste Brick Fine Aggregate on Compressive Strength and Flexural Strength of Mortar

Author(s):  
Xian Li ◽  
Fujin Wang ◽  
Fei Li
2019 ◽  
Vol 262 ◽  
pp. 06002 ◽  
Author(s):  
Magdalena Dobiszewska ◽  
Waldemar Pichór ◽  
Paulina Szołdra

The study evaluates the use of waste basalt powder as a replacement of cement to enhance hydration of cement and mortar properties. The basalt powder is a waste resulting from preparation of aggregate used in asphalt mixture production. Previous studies have shown that analysed waste used as a fine aggregate replacement has a beneficial effect on some properties of mortar and concrete, i.e. compressive strength, flexural strength and freeze resistance. The present study shows the results of the research concerning the modification of cement paste and mortar with basalt powder. The modification consists in adding the powder waste as a partial replacement of cement. The percentages of basalt powder in this research are 0-40% and 0-20% by mass of cement in the pastes and mortars respectively. The experiments were carried out to determine the influence of basalt powder on cement hydration, as well as compressive and flexural strength. Results indicate that addition of basalt powder as a replacement of cement leads to deterioration of compressive strength. The flexural strength of mortar is improved in some cases. Waste basalt powder only slightly influences the cement hydration.


2015 ◽  
Vol 754-755 ◽  
pp. 468-472 ◽  
Author(s):  
Chao Lung Hwang ◽  
Trong Phuoc Huynh

This work investigates the possibility of using fly ash (FA) and Vietnam residual rice husk ash (RHA) in producing unfired building bricks with applying densified mixture design algorithm (DMDA) method. In this research, little amount of cement was added into the mixtures as binder substitution. Unground rice husk ash (URHA), an agricultural by-product, was used as partial fine aggregate replacement (10% and 30%) in the mixtures. The solid bricks of 220×105×60 mm in size were prepared in this study. The hardened properties of the bricks were investigated including compressive strength, flexural strength and water absorption according to corresponding Vietnamese standards. Forming pressure of 35 MPa was applied to form the solid bricks in the mold. The test results show that all brick specimens obtained good mechanical properties, which were well conformed to Vietnamese standard. Compressive strength and flexural strength of the bricks were respectively in range of 13.81–22.06 MPa and 2.25–3.47 MPa. It was definitely proved many potential applications of FA and RHA in the production of unfired building bricks.


Copper slag is a rough blasting grit or a by-product acquired by the process of copper smelting and refining. These copper slags are recycled for copper recovery. In this paper, we analysed copper slag’s feasibility and evaluate its total competence in M25 grade concrete. In this observation, a concrete mixture is applied with copper slag as a fine aggregate ranging from 0%, 20%, 40%, 60%, 80%, and 100% respectively. The strength of copper slag’s implementation is accomplished on the basis of concrete’s flexural strength, compressive strength and splitting tensile strength. From the obtained results, in concrete 40% percentage of copper slag is used as sand replacement. On 28 days, the modulus of elasticity increased up to 32%, the compressive strength increased up to 34% and flexural strength is increased to 6.2%. From this experiment, it is proved technically that replacing sand using copper slag as a fine mixture in M25 grade concrete.


2018 ◽  
Vol 17 (1) ◽  
Author(s):  
Sarito Sarito ◽  
Muhtarom Riyadi ◽  
Handi Sudardja

ABSTRACTMechanic characteristics of hard mortar are: compressive strength, flexural strength, tensile strength, and adhesion power. In the meantime, at Building Material Laboratory of Civil Engineering, State Polytechnic of Jakarta, test of tensile strength and adhesion power of mortar cannot be conducted because of the absence of the test equipment.This research aims to provide electric motor-powered equipment for tensile strength test of mortar in order to complete the equipment at Building Material Laboratory of Civil Engineering, State Polytechnic of Jakarta. The particular aim of the research is to make prototype of mortar tensile strength test equipment.In this research a prototype of motor-powered mortar tensile strength test equipment and the specimens, to test the performance of the equipment, were prepared. By examining the obstacles and shortcomings, this equipment is a development of the previous research by Muhtarom Riyadi and the team, 2015. The specimens, as the sample to test the equipment, were prepared by the ratio of one part of cement and three part of fine aggregate, with the total number of the specimens of 50 pieces.By analyzing the result of observation in trial period, the equipment could function as it should be. The magnitude of maximum tensile strength that causes the mortar specimens to break depends on the quality, age, and tensile area of mortar, which magnitude can be observed in manometer or scale with the unit of kilogram.Keywords: equipment, tensile, mortar, electric motorABSTRAKSifat mekanis mortar keras antara lain kuat tekan, kuat lentur, kuat tarik dan daya lekat. Sementara ini di Laboratorium bahan bangunan Jurusan Teknik Sipil Politeknik Negeri Jakarta untuk uji kuat tarik dan daya lekat mortar belum bisa dilaksanakan karena belum adanya peralatan untuk melakukan pengujian.Penelitian ini bertujuan untuk membuat alat uji tarik mortar menggunakan tenaga penggerak motor listrik guna melengkapi peralatan yang diperlukan di Laboratorium bahan bangunan Jurusan Teknik Sipil Politeknik Negeri Jakarta. Target khusus yang ingin dicapai adalah membuat prototype alat uji tarik mortar.Dalam penelitian ini akan dibuat prototipe alat uji tarik mortar menggunakan tenaga motor listrik dan cetakan benda ujinya, sekaligus untuk menguji kinerjanya. Alat ini merupakan pengembangan oleh peneliti yang terdahulu Muhtarom Riyadi dan anggotanya, 2015), dengan mencermati kendala dan kekurangannya maka penelitian ini merupakan penyempurnaan penelitian sebelumnya Sebagai sampelnya dibuat benda uji tarik mortar dengan perbandingan 1 bagian semen berbanding 3 bagian pasir, sedangkan jumlah benda uji dibuat sebanyak 50 buah.Hasil pengamatan selama uji coba maka alat alat uji tarik mortar menggunakan tenaga penggerak motor listrik dapat berfungsi sebagaimana mestinya. Besarnya gaya tarik maksimum yang menjadikan benda uji tarik mortar putus tergantung dari mutu mortar, umur serta luas penampang tarik yang nilainya dapat diamatai pada manometer atau timbangan berat dengan satuan kilogramKata kunci : Alat, uji, tarik, mortar, motor listrik


2022 ◽  
Vol 961 (1) ◽  
pp. 012082
Author(s):  
Taghreed Abd-Almahdee Musa ◽  
Hiba Ali Abbas ◽  
Ayam Jabbar Jihad

Abstract This study includes the effect of using different dosages of integral waterproof Admixture and silica fume on some mechanical properties of concrete. Concrete improved by using different ratios of integral water proof admixture(IWP admixture) to increase strength and durability, this admixture used as percentages from cement weight in each mix ranged from 0.0% to 2% ( 0.0, 1.0%, 1.2%,1.4%,1.6%,1.8%, and 2%), compressive strength test done for cubes with (10*10*10) cm for each mix. The flexural strength test was done by (10*10*40) cm beams and tested after 28 days of curing. comparison study was made between silica fume mixes properties and mixes without silica fume. Adding IWP admixture leads to increase mechanical properties of ordinary concrete, the reference mix shows compressive strength equal to 26.38 MPa, while mixes with 2% IWP gives 38.8 MPa in this study. The study also includes the effect of using 2 main dosages of silica fume to the mixes that contain IWP, the new concrete with two admixtures show better values of compressive, tensile and flexural strength comparing with mixes with only IWP, the compressive strength increased from 38.8 MPa for ordinary IWP mixes to 52.3 MPa for 10% silica fume concrete mixes, and also the flexural strength increased from 4.8 MPa for mixes with only IWP to 7.3 MPa for mixes modified with 10 % silica fume. Study include also using waste glass as fine aggregate in mixes contain IWP and 10% silica fume and that show more increment in mechanical properties also.


Materials ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 7852
Author(s):  
Agata Stolarska ◽  
Teresa Rucińska

The subjects of this study were mortars with varying amounts of recycled ceramic aggregate (RCA). As part of the fine aggregate, the RCA volume share is 10%, 20%, 30%, 50% and 100%. First, fresh mixture parameters were evaluated, such as consistency and air content measurement by pressure method. Next, specimens were molded for compressive strength and flexural strength tests after 7, 28 and 56 days of curing. The thermo-humidity parameters of the composites, i.e., coefficient of capillary action and thermal conductivity coefficient were also investigated using nonstationary method. Sorption kinetics of the mortars at different moisture conditions at 20 °C were also evaluated. Sorption tests were carried out using two methods: TM and DVS. The sorption isotherms were plotted on the basis of equilibrium moisture content for the materials tested. The isotherms obtained by the two methods were evaluated. The results allowed us to draw conclusions on the physical and mechanical parameters of the composites with different amounts of RCA and to evaluate the ability to absorb moisture from the environment by these types of materials. A clear decrease in the compressive strength after 28 days of curing compared to the reference mortar was recorded after using 30% to 100% of RCA (approx. 26% to approx. 39%). Changes in flexural strength were significantly smaller, reaching no more than approx. 7.5%. It was shown that the amount of RCA translates into the ability to sorb moisture, which may affect the application of this type of composites. The amount of RCA translates also into the thermal conductivity coefficient, which decreased with increasing amount of RCA.


Materials ◽  
2019 ◽  
Vol 12 (23) ◽  
pp. 3849 ◽  
Author(s):  
Manuel J. Chinchillas-Chinchillas ◽  
Manuel J. Pellegrini-Cervantes ◽  
Andrés Castro-Beltrán ◽  
Margarita Rodríguez-Rodríguez ◽  
Víctor M. Orozco-Carmona ◽  
...  

Currently it is necessary to find alternatives towards a sustainable construction, in order to optimize the management of natural resources. Thus, using recycled fine aggregate (RFA) is a viable recycling option for the production of new cementitious materials. In addition, the use of polymeric microfibers would cause an increase in the properties of these materials. In this work, mortars were studied with 25% of RFA and an addition of polyacrylonitrile PAN microfibers of 0.05% in cement weight. The microfibers were obtained by the electrospinning method, which had an average diameter of 1.024 µm and were separated by means of a homogenizer to be added to the mortar. Cementing materials under study were evaluated for compressive strength, flexural strength, total porosity, effective porosity and capillary absorption, resistance to water penetration, sorptivity and carbonation. The results showed that using 25% of RFA causes decreases mechanical properties and durability, but adding PAN microfibers in 0.05% caused an increase of 2.9% and 30.8% of compressive strength and flexural strength respectively (with respect to the reference sample); a decrease in total porosity of 5.8% and effective porosity of 7.4%; and significant decreases in capillary absorption (approximately 23.3%), resistance to water penetration (25%) and carbonation (14.3% after 28 days of exposure). The results showed that the use of PAN microfibers in recycled mortars allowed it to increase the mechanical properties (because they increase the tensile strength), helped to fill pores or cavities and this causes them to be mortars with greater durability. Therefore, the use of PAN microfibers as a reinforcement in recycled cementitious materials would be a viable option to increase their applications.


Author(s):  
Huynh Thi My Dung ◽  
Huynh Van Hiep ◽  
Huynh Trong Phuoc

The possibility of using recycled waste medical-glass aggregate (RGA) as a fine aggregate in the production of normal-strength concrete was investigated in this study. The influence of RGA as crushed sand (CS) replacement at different levels (by volume) of 0 – 100% (an interval of 20%) on the engineering properties and durability of concrete was also studied. Results show that the replacement of CS by RGA insignificantly affected the workability and unit weight of fresh concrete mixtures. Besides, using RGA to replace 20 – 60% CS was beneficial in terms of compressive strength, drying shrinkage, and ultrasonic pulse velocity (UPV). At these replacement levels, the dry density values were found to increase and the water absorption values were reduced as well. However, replacing CS with RGA up to 80% and 100% caused a reduction in compressive strength, dry density, and UPV and an increase in water absorption and drying shrinkage of concretes. Closed correlations among the above-mentioned concrete properties were also found in this study. All of the concrete samples obtained compressive strength values higher than the target strength (≥ 25 MPa) and they were classified as very good quality concretes with UPV values of above 4100 m/s. The experimental results demonstrate a high possibility of producing normal-strength concrete with a fine aggregate of RGA as either partially or fully replacement of CS. This also provides an environmentally-friendly solution for recycling waste medical glass in construction materials for sustainable development.


2020 ◽  
Vol 862 ◽  
pp. 135-139
Author(s):  
Dhabit Zahin Alias Tudin ◽  
Ahmad Nurfaidhi Rizalman

In this study, crumb rubber was used to partially replaced fine aggregate in mortar mixture by 5, 10, 15 and 20 volume percentage (vol%) with untreated and NaOH-treated crumb rubber. There were three (3) different water-cement ratio used which are 0.45, 0.50 and 0.55. Thus, the total number of mixtures was 27. The mortars were tested for flowability, compressive strength, flexural strength and density. Based on the results, higher water cement ratio and percentage of crumb rubber replacement increased the flowability but lowered the density, compressive strength and flexural strength of the rubberized mortar. It was also discovered that the significant effect of water-cement ratio on the fresh and hardened properties of the rubberized mortar was due to the water content in the mixture. Meanwhile, the use of NaOH as treatment to crumb rubber improved the flowability, compressive strength and flexural strength of the rubberized mortar.


2013 ◽  
Vol 687 ◽  
pp. 219-228
Author(s):  
Eui Hwan Hwang ◽  
Jin Man Kim ◽  
Sun Gyu Park

For the recycling of rapid-cooled steel slag (RCSS), various specimens were prepared with the different replacement ratios of RCSS and the addition ratios of polymer binder. The physical properties of these specimens were then investigated by compressive strength test, flexural strength test, water absorption test, hot water resistance test, measurement of pore distribution and observation of micro-structures using scanning electron microscope(SEM). Results showed that compressive and flexural strength increased with the addition ratios of polymer binder and replacement ratios of RCSS, but those strengths decreased reversely when addition ratio of polymer binder and replacement ratio of RCSS were excessively high. By the hot water resistance test, the compressive strength and flexural strength decreased remarkably and total pore volume increased but bulk density decreased. SEM observation of structure before hot water resistance test revealed very compact infusion of structure but decomposition or thermal degradation appeared in polymer binder when observed after the hot water resistance test.


Sign in / Sign up

Export Citation Format

Share Document