A Machine Learning Based Approach for the Identification of Insulin Resistance with Non-Invasive Parameters using Homa-IR

Author(s):  
Madam Chakradar
Author(s):  
Madam Chakradar ◽  
Alok Aggarwal ◽  
Xiaochun Cheng ◽  
Anuj Rani ◽  
Manoj Kumar ◽  
...  

2021 ◽  
Vol 53 (2) ◽  
Author(s):  
Sen Yang ◽  
Yaping Zhang ◽  
Siu-Yeung Cho ◽  
Ricardo Correia ◽  
Stephen P. Morgan

AbstractConventional blood pressure (BP) measurement methods have different drawbacks such as being invasive, cuff-based or requiring manual operations. There is significant interest in the development of non-invasive, cuff-less and continual BP measurement based on physiological measurement. However, in these methods, extracting features from signals is challenging in the presence of noise or signal distortion. When using machine learning, errors in feature extraction result in errors in BP estimation, therefore, this study explores the use of raw signals as a direct input to a deep learning model. To enable comparison with the traditional machine learning models which use features from the photoplethysmogram and electrocardiogram, a hybrid deep learning model that utilises both raw signals and physical characteristics (age, height, weight and gender) is developed. This hybrid model performs best in terms of both diastolic BP (DBP) and systolic BP (SBP) with the mean absolute error being 3.23 ± 4.75 mmHg and 4.43 ± 6.09 mmHg respectively. DBP and SBP meet the Grade A and Grade B performance requirements of the British Hypertension Society respectively.


2021 ◽  
Vol 108 (Supplement_3) ◽  
Author(s):  
J Bote ◽  
J F Ortega-Morán ◽  
C L Saratxaga ◽  
B Pagador ◽  
A Picón ◽  
...  

Abstract INTRODUCTION New non-invasive technologies for improving early diagnosis of colorectal cancer (CRC) are demanded by clinicians. Optical Coherence Tomography (OCT) provides sub-surface structural information and offers diagnosis capabilities of colon polyps, further improved by machine learning methods. Databases of OCT images are necessary to facilitate algorithms development and testing. MATERIALS AND METHODS A database has been acquired from rat colonic samples with a Thorlabs OCT system with 930nm centre wavelength that provides 1.2KHz A-scan rate, 7μm axial resolution in air, 4μm lateral resolution, 1.7mm imaging depth in air, 6mm x 6mm FOV, and 107dB sensitivity. The colon from anaesthetised animals has been excised and samples have been extracted and preserved for ex-vivo analysis with the OCT equipment. RESULTS This database consists of OCT 3D volumes (C-scans) and 2D images (B-scans) of murine samples from: 1) healthy tissue, for ground-truth comparison (18 samples; 66 C-scans; 17,478 B-scans); 2) hyperplastic polyps, obtained from an induced colorectal hyperplastic murine model (47 samples; 153 C-scans; 42,450 B-scans); 3) neoplastic polyps (adenomatous and adenocarcinomatous), obtained from clinically validated Pirc F344/NTac-Apcam1137 rat model (232 samples; 564 C-scans; 158,557 B-scans); and 4) unknown tissue (polyp adjacent, presumably healthy) (98 samples; 157 C-scans; 42,070 B-scans). CONCLUSIONS A novel extensive ex-vivo OCT database of murine CRC model has been obtained and will be openly published for the research community. It can be used for classification/segmentation machine learning methods, for correlation between OCT features and histopathological structures, and for developing new non-invasive in-situ methods of diagnosis of colorectal cancer.


Cancers ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 2469
Author(s):  
Chen-Yi Xie ◽  
Chun-Lap Pang ◽  
Benjamin Chan ◽  
Emily Yuen-Yuen Wong ◽  
Qi Dou ◽  
...  

Esophageal cancer (EC) is of public health significance as one of the leading causes of cancer death worldwide. Accurate staging, treatment planning and prognostication in EC patients are of vital importance. Recent advances in machine learning (ML) techniques demonstrate their potential to provide novel quantitative imaging markers in medical imaging. Radiomics approaches that could quantify medical images into high-dimensional data have been shown to improve the imaging-based classification system in characterizing the heterogeneity of primary tumors and lymph nodes in EC patients. In this review, we aim to provide a comprehensive summary of the evidence of the most recent developments in ML application in imaging pertinent to EC patient care. According to the published results, ML models evaluating treatment response and lymph node metastasis achieve reliable predictions, ranging from acceptable to outstanding in their validation groups. Patients stratified by ML models in different risk groups have a significant or borderline significant difference in survival outcomes. Prospective large multi-center studies are suggested to improve the generalizability of ML techniques with standardized imaging protocols and harmonization between different centers.


Diagnostics ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 742
Author(s):  
Rima Hajjo ◽  
Dima A. Sabbah ◽  
Sanaa K. Bardaweel ◽  
Alexander Tropsha

The identification of reliable and non-invasive oncology biomarkers remains a main priority in healthcare. There are only a few biomarkers that have been approved as diagnostic for cancer. The most frequently used cancer biomarkers are derived from either biological materials or imaging data. Most cancer biomarkers suffer from a lack of high specificity. However, the latest advancements in machine learning (ML) and artificial intelligence (AI) have enabled the identification of highly predictive, disease-specific biomarkers. Such biomarkers can be used to diagnose cancer patients, to predict cancer prognosis, or even to predict treatment efficacy. Herein, we provide a summary of the current status of developing and applying Magnetic resonance imaging (MRI) biomarkers in cancer care. We focus on all aspects of MRI biomarkers, starting from MRI data collection, preprocessing and machine learning methods, and ending with summarizing the types of existing biomarkers and their clinical applications in different cancer types.


Circulation ◽  
2020 ◽  
Vol 142 (Suppl_3) ◽  
Author(s):  
Pratik Doshi ◽  
John Tanaka ◽  
Jedrek Wosik ◽  
Natalia M Gil ◽  
Martin Bertran ◽  
...  

Introduction: There is a need for innovative solutions to better screen and diagnose the 7 million patients with chronic heart failure. A key component of assessing these patients is monitoring fluid status by evaluating for the presence and height of jugular venous distension (JVD). We hypothesize that video analysis of a patient’s neck using machine learning algorithms and image recognition can identify the amount of JVD. We propose the use of high fidelity video recordings taken using a mobile device camera to determine the presence or absence of JVD, which we will use to develop a point of care testing tool for early detection of acute exacerbation of heart failure. Methods: In this feasibility study, patients in the Duke cardiac catheterization lab undergoing right heart catheterization were enrolled. RGB and infrared videos were captured of the patient’s neck to detect JVD and correlated with right atrial pressure on the heart catheterization. We designed an adaptive filter based on biological priors that enhances spatially consistent frequency anomalies and detects jugular vein distention, with implementation done on Python. Results: We captured and analyzed footage for six patients using our model. Four of these six patients shared a similar strong signal outliner within the frequency band of 95bpm – 200bpm when using a conservative threshold, indicating the presence of JVD. We did not use statistical analysis given the small nature of our cohort, but in those we detected a positive JVD signal the RA mean was 20.25 mmHg and PCWP mean was 24.3 mmHg. Conclusions: We have demonstrated the ability to evaluate for JVD via infrared video and found a relationship with RHC values. Our project is innovative because it uses video recognition and allows for novel patient interactions using a non-invasive screening technique for heart failure. This tool can become a non-invasive standard to both screen for and help manage heart failure patients.


Author(s):  
Siam Islam ◽  
Popin Saha ◽  
Touhidul Chowdhury ◽  
Asif Sorowar ◽  
Raqeebir Rab

Sign in / Sign up

Export Citation Format

Share Document