scholarly journals PENGARUH DIOCTYL ADIPATE TERHADAP SIFAT RHEOLOGIKAL HTPB TERPLASTISISASI (EFFECT OF DIOCTYL ADIPATE ON THE RHEOLOGICAL PROPERTIES OF PLASTICIZED HTPB)

2019 ◽  
Vol 16 (2) ◽  
pp. 139
Author(s):  
Afni Restasari ◽  
Luthfia Hajar Abdillah ◽  
Rika Suwana Budi ◽  
Kendra Hartaya

Pengembangan pengetahuan terhadap sifat rheologikal isian cair dari propelan berguna untuk mendapatkan sifat slurry yang optimum. Pengembangan ini dapat dimulai dari campuran HTPB-DOA sehingga penelitian ini bertujuan untuk mengetahui pengaruh DOA terhadap sifat rheologikal HTPB-DOA yang meliputi sifat alir terhadap shear rate, viskositas dan viskositas saat zero shear rate. Dalam metodenya, DOA divariasi 0, 5, 10, 15 dan 20% dan dicampur dengan HTPB. Sifat rheologikal dipahami dengan mengukur viskositasnya pada kecepatan putar 0,5; 1; 1,5; 2; 2,5; 3; 4 dengan spindel tipe 2 dari viskometer Brookfield dan menganalisa grafik shear stress vs shear rate serta viskositas vs shear rate. Berdasarkan analisa tersebut, diketahui bahwa campuran HTPB-DOA bersifat shear thickening. Semakin banyak DOA yang ditambahkan, semakin rendah viskositas campuran, semakin rendah nilai viskositas pada zero shear rate dan semakin kuat sifat shear thickening dari campuran.

Nafta-Gaz ◽  
2021 ◽  
Vol 77 (2) ◽  
pp. 127-135
Author(s):  
Rafał Kozdrach ◽  

The article presents the results of research on the influence the type of base oil in lubricating compositions has on the rheological parameters of selected lubricants. Vegetable, mineral, and synthetic dispersion phases were used to produce lubricating greases. The modified amorphous silica was used as the dispersed phase. However, as a modifying additive was used a substance containing the antioxidants, corrosion inhibitors, and EP/AW additives. The experiments on rheological properties were carried out using a Physica MCR 101 rotational rheometer (manufactured by Anton Paar), equipped with a diffusion air bearing and connected to a pneumatic supply – an oil-free Jun-Air compressor and air drying block. The device is equipped with a Peltier system for temperature control in the range of –20°C to 200°C and an external thermostatic VISCOTHERM V2 system, working in the temperature range of –20°C to 200°C. The rheometer control and measurement data analysis were performed using Rheoplus software. The tests were carried out using a cone-plate measuring system with a shear rate range of 0.01–100 s-1 at 20°C for lubricating compositions prepared on various oil bases. To evaluate the value of rheological parameters, the results of tests of the dependence between shear stress and shear rate (flow curves) were used. For the theoretical determined on the flow curves, the following rheological models were used: Bingham, Herschel–Bulkley, Casson, and Tscheuschner. The values of the shear stress (yield point) in depending on the type of dispersion phase has changed. This proves that the use of a base oil with the appropriate functional properties does not weaken, but reinforces the spatial structure of a lubricating grease. It has an important meaning when selecting construction parameters when designing a central lubrication system with grease made from a vegetable oil base (Abyssinian oil). The rheological properties of the lubricating grease are influenced by the type of base oil and thickener, any additives in the grease, the production technology of the grease, and the conditions in which it is used. The tests revealed an important influence of the base oil on the rheological parameters that describe the behaviour of lubricating compositions subjected to stresses and strains in a lubricating system.


2012 ◽  
Vol 560-561 ◽  
pp. 586-590 ◽  
Author(s):  
Biao Yang ◽  
Sheng Wang ◽  
Guo Zhi Xu ◽  
Fei Xin

The nano-SiO2/polyethylene glycol (PEG) dispersion system was prepared by centrifugal mixing, and its rheological properties were investigated. The results showed the revolution and rotation speed during the centrifugal mixing have a significant effect on the rheological properties of SiO2/PEG system. When the revolution speed of the centrifugal mixer was fixed at a high speed of 1200rpm, the shear thickening effect of SiO2/PEG was gradually increased with the decrease of rotation speed, and the maximum viscosity (η) of 12340 mPa•s appeared at the rotation speed of 200 rpm. At the low revolution speed of 700 rpm, the increase of the rotation speed significantly enhanced the shear thickening effect. When the rotation speed was 700rpm, the maximum viscosity was up to 86130mPa s. In steady state experiments, the systems show a shear-thinning property under low shear rate. When the shear rate exceeded a critical value (γ= 24.92 s-1), the viscosity first increased, and then decreased sharply. In the dynamic experiments, with the increase of angular frequency (ω), the loss modulus (G″) also increased and the systems behaved as a shear-thickening fluid.


2014 ◽  
Vol 13 (02) ◽  
pp. 1450009 ◽  
Author(s):  
Shreedhar Kolekar

The present paper focuses on preparation and process of the magnetorheological (MR) fluid whose carrier fluid is silicone-based oil and its additive is the commercial grease with different concentration of iron particles. General properties of MR fluid are discussed and rheological properties like shear rate, shear stress, viscosity of MR fluid can be found by using cone-and-plate sensor system-type rheometer. The result shows that shear stress as a function of magnetic flux density and viscosity does not strictly scale with iron loading.


Author(s):  
Luiz U R Sica ◽  
Edwin M C Contreras ◽  
Enio P Bandarra Filho ◽  
José A R Parise

During cold start of internal combustion engines, coolant temperature, and thermal conductivity are key parameters in the heat transfer processes that ultimately affect pollutant emissions and engine performance. Hereupon the use of coolants with suspended nanoparticles, to enhance thermal conductivity, emerged as a promising technology. However, for Newtonian materials, viscosity also increases with nanoparticle concentration. To overcome increased pumping power, the use of non-Newtonian nanofluids makes such application potentially feasible, specifically for shear-thinning materials, in which a higher shear rate leads to reducing shear viscosity due to higher shear stress. Accordingly, a nanofluid, suitable for engine cooling (0.2 wt.% MWCNT-engine coolant/distilled water 30/70 v/v%), was here fabricated and mapped. Shear rate and temperature were varied, with focus on cold start investigation. Shear thinning and shear thickening regions were mapped according to the shear rate levels, for each temperature considered. The nanofluid behaved as shear-thinning material for the entire range of temperatures (−10°C–25°C). Above shear rates of 500 s−1 and flow curves with temperatures below −5°C, a prominent shear thickening behavior was observed. Additionally, the relative apparent viscosity data were compared with four classical models. Regarding the curve fitting parameters of a modified Herschel-Bulkley equation, above 0°C, the apparent yield stress, [Formula: see text], was invariant with temperature. Besides, for the temperature range from 0°C to 20°C, the flow index remained approximately constant. For temperatures above −5°C, infinite-shear-rate viscosity and consistency index presented a linear decrease and a third-degree polynomial-like behavior, respectively.


Tribologia ◽  
2018 ◽  
Vol 279 (3) ◽  
pp. 25-33 ◽  
Author(s):  
Ryszard CZARNY

The paper presents the results of studies of the influence of fillers introduced into lubricating greases on changes in values of shear stresses in resulting lubricant compositions. These fillers were powders of graphite, molybdenum disulphide, and PTFE. They are added to grease to improve their tribological properties. They also impact the rheological properties of lubricating compositions, especially on the course of the shear stress, whose value decreases with the duration of the flow of these compositions. Knowledge of changes in the value of this stress is essential in designing central lubrication systems in which these compositions may be used. Tests were performed on lithium grease without fillers as well as on a composition of this grease with the fillers mentioned above. Measurements were carried out using a Rheotest 2.1 rheometer by changing the shearing time at selected gradients of shear rate. Test results have shown that both the kind of filler and the shearing time have an impact on the value of shear stress in the tested lubricant composition.


Materials ◽  
2019 ◽  
Vol 12 (15) ◽  
pp. 2431
Author(s):  
Huixing Wang ◽  
Guang Zhang ◽  
Jiong Wang

This paper investigates the quasi-static rheological properties of lithium-based magnetorheological (MR) grease under large deformation. Three types of lithium-based MR grease comprising different mass ratios of carbonyl iron (CI) particles and lithium-based grease were prepared. The dependence of the magneto-induced stress–strain curves for MR grease on CI particles content, shear rate, and shear deformation under quasi-static monotonic shear conditions were tested and discussed. The results demonstrate that the shear rate dependence of the maximum yield stress is significantly weakened by the magnetic field, and this weakening is further enhanced as the CI particles content of MR grease increases. In addition, to evaluate and characterize the behavior of the cyclic shear–stress curves of MR grease under quasi-static condition, cyclic shear tests under different controlled conditions, i.e., CI particles content, shear rate, shear strain amplitude, and magnetic field strength, were conduct and analyzed. The magneto-induced shear stress of MR grease with higher CI particles content shows a sharp decrease during the transition from loading to unloading. Moreover, the experiment results also show that the damping characteristics of MR grease are highly correlated with CI particles content, shear strain, and magnetic field strength.


2008 ◽  
Vol 141-143 ◽  
pp. 319-323 ◽  
Author(s):  
W.C. Keung ◽  
Y.F. Lee ◽  
Wei Wei Shan ◽  
Shou Jing Luo

Thixotropy is essential to semi-solid processing, and because of it the semi-solid material is characterized by ‘shear shinning’. Here, thixotropic strength and thixotropic criteria in semi-solid processing are put forward based on related theories and experiments, and thixotropic mechanism and its influencing factors are also investigated. The results are as follows: 1) the term of thixotropic strength means that with constant shear rate at semi-solid temperature, the semi-solid body begins to flow when the shear stress reach a certain value. This value of shear stress is defined as the thixotropic strength; 2) Thixotropic behavior happens with ‘shear thinning’ because of the deagglomeration of solid particles, while ‘shear thickening’ happens because of the agglomeration at the same time. With increasing shear time, the shear stress increases first and then decreases rapidly to reach a stable value. 3) There are three important factors that influence ‘thixotropic strength’: temperature (hence solid content), initial microstructure (including size, shape factor and uniformity of solid particles) and shear rate.


2021 ◽  
Vol 17 (1) ◽  
pp. 39-49
Author(s):  
Halimatuddahliana Nasution ◽  
Winny Winny

Analysis of heating temperature and load weight to the rheological properties of waste plastic cups is very important to gain fundamental understanding of the structure, characteristics, and processability of the material. The samples were tested using melt flow indexer. The heating temperature investigated were 180°C, 190°C, 200°C, 210°C, 220°C and 230°C, and the weight load were 1,875 g, 2,160 g, 2,835 g, 3,035 g and 3,450 g. The results obtained showed that the rheological properties of products such as melt flow index, shear stress and shear rate increased and the viscosity decreased with the increasing of heating temperature and load weight. For higher heating temperatures, the melt flow index, shear stress and shear rate of waste plastic cup increased significantly with the increasing load weight whereas the viscosity of waste plastic cup did not decrease significantly with the increasing load weight.


2011 ◽  
Vol 339 ◽  
pp. 204-209
Author(s):  
Ai Ying Li ◽  
Jie Yun Chang ◽  
Xiao Bing Zuo ◽  
Rong Xin Yuan

Blends of polycarbonate (PC) and highly branched polystyrene (HBPS) were prepared by melt blending. The steady rheological behavior of them was determined using a capillary rheometer, furthermore, the effect of shear rate, temperature and the blend component on the viscosity of the blends was discussed. The results showed that all the blends exhibit the nature of the pseudo-plastic fluids, and the viscosity of them decreases dramatically with the increase of temperature and does slightly with the increase of shear rate. At a fixed shear stress, the viscosity of the blends is decreased with the increase of the HBPS content. Microstructure studies using SEM showed that all the blends are characteristic of a two-phase morphology, with spherical droplets of the minor HBPS phase dispersed in the continuous PC phase.


Author(s):  
Eric Cayeux ◽  
Amare Leulseged

Drilling fluids are visco-elastic materials, i.e. they behave as a viscous fluid when subject to a sufficient shear stress and like an elastic solid otherwise. Both their elastic and viscous properties are time-dependent, i.e. drilling fluids are thixotropic. Because of thixotropy, it takes a finite time before the effective viscosity of a drilling fluid attains an equilibrium when the fluid is subject to a change of shear rate. This effect is visible when one changes the applied shear rate in a rheometer, as the fluid will gradually adapt to the new shearing conditions. When the velocity of a drilling fluid changes, for instance due to a change in pump flow rate, movement of the drill string, or change of flow geometry, the fluid will exhibit a time-dependent response to the new shearing conditions, requiring a certain time to reach the new equilibrium condition. Unfortunately, the time-dependence of the rheological properties of drilling fluids are usually not measured during drilling operations and therefore it is difficult to estimate how thixotropy impacts pressure losses in drilling operations. For that reason, we have systematically measured the time-dependence of the rheological properties of several samples of water-based, oil-based and micronized drilling fluids with a scientific rheometer in order to capture how drilling fluids systems respond to variations of shear rates. Based on these measurements, we propose to investigate how one existing thixotropic model manages to predict the shear stress as a function of the shear rate while accounting for the shear history and gelling conditions. Then we propose a modified model that fits better, overall, with the measurements even though there are still noticeable discrepancies, especially when switching back to low shear rates.


Sign in / Sign up

Export Citation Format

Share Document