scholarly journals Basic concepts in clinical immunology: A review

2021 ◽  
Vol 12 (3) ◽  
pp. 490-496
Author(s):  
Andrew Nakibinge Kiboneka

Immunity is the state of protection against foreign pathogens or substances(antigens). Host defence mechanisms consist of innate immunity (natural immunity), which mediates the initial protection against infections, and adaptive immunity (specific/acquired immunity), which develops more slowly and provides more specialized and more effective defence against infections. The immune system evolved to protect multicellular organisms against pathogens. The body is protected against pathogens by a variety of effector cells and molecules that together make up the immune system. All the cellular elements of blood, including the red blood cells, platelets and white blood cells of the immune system, ultimately derive from the hematopoietic stem cells of the bone marrow. The cells of the adaptive immune system consist of lymphocytes, antigen-presenting cells and effector cells that eliminate microbes. Strategies of avoidance, and tolerance represent different ways of dealing with pathogens. Anatomic barriers and chemical barriers e.g complement and antimicrobial proteins may be considered as primary forms of avoidance.Macrophages,neutrophils and dendritic cells are important cells that that detect infection. Pattern recognition receptors (PRRs) recognize simple molecules and regular patterns of molecular structures called pathogen associated molecular patterns. Some PRR are transmembrane proteins e.g Toll like receptors (TLRs). Vaccination is a simple, safe, and effective way of protecting people against harmful diseases, before they come into contact with them. Immunization is the process whereby a person is made immune or resistant to an infectious disease, typically by the administration of a vaccine. Inappropriate immune responses can result into hypersensitivity, autoimmune disease or immune deficiency.

Author(s):  
Paul Klenerman

The immune system resists threats from outside as well as from within the body. ‘What is the immune system?’ considers the basic mechanisms of immunity and describes the specific structures in the immune system where more complex activities take place. The critical cells—‘white blood cells’ or leukocytes—are generated in the bone marrow. Leukocytes are highly diverse, each with its own specialist function, but broadly divided into the myeloid (develops in the marrow) and the lymphoid (develops in lymphoid structures including the thymus, lymph nodes, and spleen) leukocyte. We have both ‘innate’ (which we are born with) and ‘adaptive’ (which encompasses learned, very specific responses to individual infections) immunity.


2021 ◽  
Vol 22 (13) ◽  
pp. 7091
Author(s):  
Timothée Fettrelet ◽  
Lea Gigon ◽  
Alexander Karaulov ◽  
Shida Yousefi ◽  
Hans-Uwe Simon

Eosinophils are specialized white blood cells, which are involved in the pathology of diverse allergic and nonallergic inflammatory diseases. Eosinophils are traditionally known as cytotoxic effector cells but have been suggested to additionally play a role in immunomodulation and maintenance of homeostasis. The exact role of these granule-containing leukocytes in health and diseases is still a matter of debate. Degranulation is one of the key effector functions of eosinophils in response to diverse stimuli. The different degranulation patterns occurring in eosinophils (piecemeal degranulation, exocytosis and cytolysis) have been extensively studied in the last few years. However, the exact mechanism of the diverse degranulation types remains unknown and is still under investigation. In this review, we focus on recent findings and highlight the diversity of stimulation and methods used to evaluate eosinophil degranulation.


Author(s):  
Vincent Geenen

AbstractThe conventional perception asserts that immunology is the science of ‘discrimination’ between self and non-self. This concept is however no longer tenable as effector cells of the adaptive immune system are first conditioned to be tolerant to the body’s own antigens, collectively known as self until now. Only then attain these effectors the responsiveness to non-self. The acquisition of this essential state of tolerance to self occurs for T cells in the thymus, the last major organ of our body that revealed its intricate function in health and disease. The ‘thymus’ as an anatomical notion was first notably documented in Ancient Greece although our present understanding of the organ’s functions was only deciphered commencing in the 1960s. In the late 1980s, the thymus was identified as the site where clones of cells reactive to self, termed ‘forbidden’ thymocytes, are physically depleted as the result of a process now known as negative selection. The recognition of this mechanism further contributed to the belief that the central rationale of immunology as a science lies in the distinction between self and non-self. This review will discuss the evidence that the thymus serves as a unique lymphoid organ able to instruct T cells to recognize and be tolerant to harmless self before adopting the capacity to defend the body against potentially injurious non-self-antigens presented in the context of different challenges from infections to exposure to malignant cells. The emerging insight into the thymus’ cardinal functions now also provides an opportunity to exploit this knowledge to develop novel strategies that specifically prevent or even treat organ-specific autoimmune diseases.


2020 ◽  
Author(s):  
aida santaolalla ◽  
Sam Sollie ◽  
Ali Rislan ◽  
Debra H. Josephs ◽  
Niklas Hammar ◽  
...  

Abstract Background: Although the onset of inflammatory cascades may profoundly influence the nature of antibody responses, the interplay between inflammatory and humoral (antibody) immune markers remains unclear. Thus, we explored the reciprocity between the humoral immune system and inflammation and assessed how external socio-demographic factors may influence these interactions.Methods: From the AMORIS cohort, 5,513 individuals were identified with baseline measurements of serum humoral immune (immunoglobulin G, A & M (IgG, IgA, IgM)) and inflammation (C-reactive protein (CRP), albumin, haptoglobin, white blood cells (WBC), iron and total iron-binding capacity) markers measured on the same day. Correlation analysis, principal component analysis and hierarchical clustering were used to evaluate biomarkers correlation, variation and associations. Multivariate analysis of variance was used to assess associations between biomarkers and educational level, socio-economic status, sex and age.Results: Frequently used serum markers for inflammation, CRP, haptoglobin and white blood cells, correlated together. Hierarchical clustering and principal component analysis confirmed the interaction between these main biological responses, showing an acute response component (CRP, Haptoglobin, WBC, IgM) and adaptive response component (Albumin, Iron, TIBC, IgA, IgG). A socioeconomic gradient associated with worse health outcomes was observed, specifically low educational level, older age and male sex were associated with serum levels that indicated infection and inflammation.Conclusions: These findings indicate that serum markers of the humoral immune system and inflammation closely interact in response to infection or inflammation. Clustering analysis presented two main immune response components: an acute and an adaptive response, comprising markers of both biological pathways. Future studies should shift from single internal marker assessment to multiple humoral and inflammation serum markers combined, when assessing risk of clinical outcomes such as cancer.


2016 ◽  
Vol 47 (6) ◽  
Author(s):  
D. S. Dheyab

This study was conducted to investigate the effect of zinc in dose 15mg/kg.bw daily  taken by the mouth and dexamethasone 4mgIkg.Bw by injection for 30days on some hematological biochemical tests and some histological changes of liver spleen in male rabbits. Thirty rabbits were used that divided into 3 randomized groups (each group contain 10 male rabbits ). Control group was taken normal food and water, Zinc group that gave zinc at dose of 15mg/kg.BW/daily/oral on 1, 2, 3, 4 weeks. Dexamethasone with zinc group : Employ dexamethasone 4mg/Kg.Bw . I.M dialy for 1 and 2 weeks for experiment and at  3, 4th weeks they gave zn 15mg/lKg.Bw day/orally. Blood samples were taken from the heart directly in 2 and 4weeks to examine packed cell volume (pcv), white blood cells (WBCs), Red blood cells (RBCs) with differential Leuckcyte count.separation blood collection to plasma and examine glucose mg/dl , cholesterol mg/dl. In histological tests, rabbits were killed and separate their organs tissue from the body to examine liver and spleen. The results revealed  a decrease in level of RBCs, pcv after treatment with zinc 15, mg/Kg.Bw orally (zinc group) and increase in WBCs with differential leuckocyte count specially neutrophil cell, while biochemical tests show increase in glucose and cholesterol levels after treatment with dexamethasone 4mglkgBw. I/M seen increase in counts of RBCs , PCV, WBCs and differential lenkocyte count and decrease in glucose with cholesterol parameters, histological changes show change in liver after treatment by dexamethasone 4mglKg.Bw ,spleen tissue seen necrosis and pigmentation with hemorrhage after take dexamethasone 4mglkg in (dexamethasone + zinc group). Results also showed that zinc enhanced the immune system in at normal dose for limited time  because of its effect on other mineral such as copper and causes anemia , while the dexamethasone is a drug used for antianflammatory but for a short time.                                                                                                                           


2002 ◽  
Vol 45 (1) ◽  
pp. 3-5 ◽  
Author(s):  
Jiří Patočka ◽  
Miroslav Špliňo

The anthrax toxin comprises three proteins. When they work together, they can kill humans, especially after spores of the bacteria have been inhaled. One anthrax protein, called protective antigen (PA), chaperones the two other toxins into human or animal cells and shields them from the body’s immune system. The second, lethal factor (LF), destroys the white blood cells that hosts send in defence. The third toxin molecule, edema factor (EF), hijacks the signaling system in the body. This disrupts the energy balance of cells and leads to them accumulating fluid and complete destroy of cells.


2020 ◽  
Author(s):  
Raymond F. Robledo ◽  
Steven L. Ciciotte ◽  
Joel H. Graber ◽  
Yue Zhao ◽  
Amy J. Lambert ◽  
...  

AbstractStudies of the severely pancytopenic scat mouse model first demonstrated the crucial role of RASA3, a dual RAS and RAP GTPase activating protein (GAP), in hematopoiesis. RASA3 is required for survival in utero; germline deletion is lethal at E12.5-13.5 due to severe hemorrhage and decreased fetal liver erythropoiesis. Conditional deletion in hematopoietic stem and progenitor cells (HSPCs) using Vav-Cre recapitulates the null phenotype demonstrating that RASA3 is required at the stem and progenitor level to maintain blood vessel development and integrity and effective blood production. In adults, bone marrow blood cell production and spleen stress erythropoiesis are suppressed significantly upon induction of RASA3 deficiency, leading to pancytopenia and death within two weeks. Notably, RASA3 missense mutations in mouse models scat (G125V) and hlb381 (H794L) show dramatically different hematopoietic consequences specific to both genetic background and molecular variant. Global transcriptomic studies in scat suggest potential targets to ameliorate disease progression.Author SummaryHematopoiesis is the process by which blood cells are formed. The individual must have a normal complement of red blood cells to prevent anemia, platelets to control bleeding, and white blood cells to maintain immune functions. All blood cells are derived from hematopoietic stem cells that differentiate into progenitor cells that then develop into mature circulating cells. We studied several mouse strains carrying different mutations in RASA3. We show that RASA3 is required at the earliest stages of blood formation, the stem and progenitor cells, and that the complement of genes other than RASA3, or the genetic background of the mutant strain, profoundly alters the overall effect on blood formation. Further, the molecular nature of the mutation in RASA3 also has a profound and independent effect on overall blood formation. One strain, designated scat, suffers cyclic anemia characterized by severe anemic crisis episodes interspersed with remissions where the anemia significantly improves. Comparison of scat crisis and remission hematopoietic stem and progenitor cells reveals striking differences in gene expression. Analyses of these expression differences provide clues to processes that potentially drive improvement of anemia in scat and provide new avenues to pursue in future studies to identify novel therapeutics for anemia.


Animals ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 1209 ◽  
Author(s):  
Muhammad Abdul Basit ◽  
Arifah Abdul Kadir ◽  
Teck Loh ◽  
Saleha Abdul Aziz ◽  
Annas Salleh ◽  
...  

This research was conducted to estimate the effects of Persicaria odorata leaf meal (POLM) on haematological indices, serum biochemical attributes, and internal organs parameters, including histomorphological features of the liver, in broiler chickens. A total of 120 one-day-old male broiler chicks (Cobb-500) were randomly allocated into four experimental groups. The dietary treatments were basal diet (BD), which served as the control (C), along with BD + 2 g/kg POLM (Po2), BD + 4 g/kg POLM (Po4), BD + 8 g/kg POLM (Po8), which were the supplemented groups. The body weight gain (BWG) showed a linear increase and feed conversion ratio (FCR) showed a linear decrease with increasing POLM dosage at day 42 (p ˂ 0.05) and for the overall growth performance period (p ˂ 0.01). On day 21 and day 42, the values of red blood cells (RBCs), white blood cells (WBCs), haemoglobin (Hb), and packed cell volume (PCV) showed linear increases (p ˂0.05) as the dosage of POLM increased in the diet. On day 21, dietary supplementation of POLM linearly decreased (p ˂ 0.05) the serum activity of alkaline phosphatase (ALP), aspartate aminotransaminase (AST), alanine aminotransaminase (ALT), and serum levels of urea and creatinine. On the other hand, serum levels of total protein (TP), albumin, and globulin showed a linear increase (p ˂ 0.05) as the POLM dosage increased. On day 42, the serum activity of AST and ALT and serum levels of glucose, cholesterol, triglycerides, urea, and creatinine showed linear decreases (p ˂ 0.05) with increased levels of POLM in the diet. However, POLM supplementation linearly increased (p ˂ 0.05) the serum levels of TP and globulin. Dietary inclusion of POLM did not influence the organ parameters and showed no adverse effects on the liver histomorphology. In conclusion, supplementation of POLM increased the growth performance, improving haematological indices and serum biochemistry profiles of broiler chickens without any deleterious effects on the liver histomorphology. The results of the present study provide evidence that POLM can be safely used at a dose rate of 8 g/kg of feed as an alternative to conventional antimicrobial growth promoters (AGPs).


Author(s):  
Tyler J. Albert ◽  
Erik R. Swenson

Blood is a dynamic fluid consisting of cellular and plasma components undergoing constant regeneration and recycling. Like most physiological systems, the concentrations of these components are tightly regulated within narrow limits under normal conditions. In the critically-ill population, however, haematological abnormalities frequently occur and are largely due to non-haematological single- or multiple-organ pathology. Haematopoiesis originates from the pluripotent stem cell, which undergoes replication, proliferation, and differentiation, giving rise to cells of the erythroid, myeloid, and lymphoid series, as well as megakaryocytes, the precursors to platelets. The haemostatic system is responsible for maintaining blood fluidity and, at the same time, prevents blood loss by initiating rapid, localized, and appropriate blood clotting at sites of vascular damage. This system is complex, comprising both cellular and plasma elements, i.e. platelets, coagulation and fibrinolytic cascades, the natural intrinsic and extrinsic pathways of anticoagulation, and the vascular endothelium. A rapid, reliable, and inexpensive method of examining haematological disorders is the peripheral blood smear, which allows practitioners to assess the functional status of the bone marrow during cytopenic states. Red blood cells, which are primarily concerned with oxygen and carbon dioxide transport, have a normal lifespan of only 120 days and require constant erythropoiesis. White blood cells represent a summation of several circulating cell types, each deriving from the hematopoietic stem cell, together forming the critical components of both the innate and adaptive immune systems. Platelets are integral to haemostasis, and also aid our inflammatory and immune responses, help maintain vascular integrity, and contribute to wound healing.


Sign in / Sign up

Export Citation Format

Share Document