scholarly journals Interactions between RAP and virgin asphalt binders in field, plant, and lab mixes

2022 ◽  
Vol 13 (1) ◽  
pp. 231-249
Author(s):  
Eslam Deef-Allah ◽  
Magdy Abdelrahman

Reclaimed asphalt pavement (RAP) has been used in asphalt mixes for several years in the United States. However, the interactions between the RAP binder and the virgin asphalt binder (VAB) need further investigations. Thus, the main objective of this study was to explore the rheological and chemical properties of extracted asphalt binders (EABs) from plant, field, and lab mixes. The plant mixes were collected from behind the paver, reheated to the compaction temperature, and compacted in the lab. The field mixes were collected as cores within two weeks after the end of the construction process. The lab mixes were fabricated in the lab using the same materials used in the plant and field mixes. The mixes contained high asphalt binder replacement percentages by RAP, which were greater than 30%. The EABs were treated as rolling thin film oven aged VABs (RTFO AVABs). The rheological properties of EABs and RTFO AVABs were analyzed using temperature sweep, frequency sweep, and multiple stress creep recovery tests. Chemical investigations of EABs and RTFO AVABs were carried out using Fourier transform infrared spectroscopy and thermogravimetric analysis. The EABs from plant or lab mixes showed higher stiffnesses than EABs from field mixes. This occurred because of the extra heating that was implemented for the plant mixes before the compaction in the lab, which caused more interactions between the RAP binder and VABs. The fabrication mechanism, mixing and short-term aging processes, used in lab mixes caused more interactions between RAP binder and VABs than in the field mixes.

2017 ◽  
Vol 737 ◽  
pp. 547-553
Author(s):  
Iva Krcmova ◽  
Petr Hyzl ◽  
Pavla Nekulova ◽  
Pavel Coufalik ◽  
Ondrej Dasek

With increased demand and limited aggregate and binder supply, hot mix asphalt (HMA) producers discovered that reclaimed asphalt pavement (RAP) is a valuable component in HMA. This paper is concerned with the current issue of higher using RAP (Reclaimed Asphalt Pavement) in asphalt mixtures for pavement wearing courses. It describes the effects of application of three types of rejuvenation additives on properties of aged asphalt binders made from a regular RAP. These rejuvenation additives restore the physical and chemical properties of aged binders. In addition, the aged asphalt binder with rejuvenators applied was subjected to a short-term laboratory aging using the RTFOT (Rolling Thin Film Oven Test). This method simulate aging asphalt binder during the manufacturing process and laying. To assess the binder properties, both the standard empirical tests and more advanced functional tests (dynamic shear rheometer and bending beam rheometer) have been performed. Last part of the paper provides an evaluation of the individual rejuvenation additives. Based on the results it can be concluded that a positive change in properties of aged asphalt binder after applying all the three rejuvenators has been proven.


2022 ◽  
Vol 13 (1) ◽  
pp. 140-152
Author(s):  
Eslam Deef-Allah ◽  
Magdy Abdelrahman

The use of reclaimed asphalt pavement (RAP) and/or recycled asphalt shingles (RAS) in the asphalt mixtures is a common practice in the U.S.A. However, there is a controversy to date on how RAP/RAS interact with virgin asphalt binders (VABs) in asphalt mixtures. For mixtures containing RAP/RAS, the aged asphalt binders in RAP and air-blown asphalt binders in RAS alter the performances of the extracted asphalt binders (EABs). Thus, the rheological properties of EABs from these mixtures require more investigation. The focus of this paper was relating the high-temperature properties of EABs from field cores to the corresponding rolling thin film oven aged virgin asphalt binders (RTFO AVABs). Furthermore, a comparison of the effect of RAP and RAS on the high-temperature rheological properties of EABs was another objective. Different asphalt cores were collected from the field within two weeks after the pavement construction process in 2016. These cores represented eight asphalt mixtures with different asphalt binder replacement percentages by RAP, RAS, or both. The asphalt binders were extracted from these mixtures and considered as RTFO AVABs. The high-temperature rheological properties included the temperature sweep and frequency sweep testing and the multiple stress creep recovery testing. The EABs had higher stiffnesses and elasticates than the corresponding RTFO AVABs because of the aged binders in RAP/RAS. The binders in RAP interacted more readily with VABs than RAS binders.


2020 ◽  
Vol 12 (23) ◽  
pp. 10057
Author(s):  
Hyun Hwan Kim ◽  
Mithil Mazumder ◽  
Soon-Jae Lee ◽  
Moon-Sup Lee

In this study, thermoplastic polyurethane (TPU) and styrene-isoprene-styrene (SIS) were utilized to enhance asphalt binder properties. Superpave asphalt binder tests and multiple stress creep recovery (MSCR) were conducted to evaluate the physical and rheological performance (viscosity, rutting, and cracking properties) of the asphalt binders before and after short-term aging and after the long-term aging process. The results showed that (i) TPU has a positive effect on workability, including the mixing and compaction processes, which was evident from the reduced binder viscosity; (ii) asphalt binders with TPU and SIS showed better rutting resistance compared to the SIS binders without TPU; (iii) the cracking resistance of asphalt binders was found to be improved significantly with the addition of TPU; and (iv) TPU has the potential to be considered as a sustainable polymer modifier for producing bearable asphalt binders by improving rutting and crack resistance without increasing the melting temperature of the asphalt binders.


2017 ◽  
Vol 2017 ◽  
pp. 1-7 ◽  
Author(s):  
Mojtaba Mohammadafzali ◽  
Hesham Ali ◽  
James A. Musselman ◽  
Gregory A. Sholar ◽  
Aidin Massahi

Fatigue cracking is an important concern when a high percentage of Reclaimed Asphalt Pavement (RAP) is used in an asphalt mixture. The aging of the asphalt binder reduces its ductility and makes the pavement more susceptible to cracking. Rejuvenators are often added to high-RAP mixtures to enhance their performance. The aging of a rejuvenated binder is different from virgin asphalt. Therefore, the effect of aging on a recycled asphalt mixture can be different from its effect on a new one. This study evaluated the cracking resistance of 100% recycled asphalt binders and mixtures and investigated the effect of aging on this performance parameter. The cracking resistance of the binder samples was tested by a Bending Beam Rheometer. An accelerated pavement weathering system was used to age the asphalt mixtures and their cracking resistance was evaluated by the Texas Overlay Test. The results from binder and mixture tests mutually indicated that rejuvenated asphalt has a significantly better cracking resistance than virgin asphalt. Rejuvenated mixtures generally aged more rapidly, and the rate of aging was different for different rejuvenators.


Author(s):  
◽  
Neha Shrestha ◽  

The warm mixed asphalt (WMA) technology has gained a lot of interests in the recent years in academia, state agencies and industries. WMA technology allows reductions in production and compaction temperatures guaranteeing relevant environmental and cost saving benefits. The purpose of the present study was to study and evaluate the performance of a typical additive in WMA pavement with Reclaimed Asphalt Pavement (RAP) on rutting, fatigue cracking and thermal cracking resistance on RI Route 102. In the present study, the asphalt binder was tested at different dosages of additive using Dynamic Shear Rheometer (DSR), Rolling Thin Film Oven (RTFO), Pressure Aging Vessel (PAV), Multiple Stress Creep Recovery (MSCR) and Bending Beam Rheometer (BBR). From the overall test, it was found that 0.7% additive would lessen pavement damage due to rutting, fatigue cracking and thermal cracking. Based on the results of binder test, Hot Mix Asphalt (HMA) and WMA specimens containing 20 % RAP were prepared using PG 58-28 asphalt binder and Superpave Gyratory Compactor (SGC). From the volumetric analysis of both HMA and WMA specimens, it was determined that the optimum binder content (OBC) for HMA with 20% RAP was 5.3 percent and the OBC for WMA (0.7% additive with RAP was 5.6%. It was found that the required amount of neat regular asphalt binder for WMA specimen was higher than the one required by HMA. HMA and WMA Specimens with each containing 20% RAP were prepared at OBC and indirect tensile (IDT) strength test were conducted on that specimen. The test indicated that the performance of HMA mixtures was better than WMA with same amount of RAP. RI Route 102 was used as case study in this research study. Route 102 was rehabilitated through Full Depth Reclamation (FDR) in 2015. First half road of RI Route 102 was built with HMA base and surface layer and the other half was built with WMA base and surface layer using a typical additive. It was found that both sections have similar value in Pavement Serviceability Index (PSI) and in International Roughness Index (IRI) at this time. Four specimens were prepared to predict the performance of asphalt pavement using the dynamic modulus and the master curve. Two HMA specimens each were prepared with and without RAP. Similarly, other two WMA specimens were prepared with and without RAP. These four specimens were tested with the Asphalt Mixture Performance Tester (AMPT) machine and developed the master curves for each specimen. The results of the material testing were used to predict the performance of each test sections by using AASHTOWare Pavement ME Design (PavementME) software. It was found that the WMA-RAP performed better in fatigue cracking resistance but was found to perform poor in rutting resistance than HMA and HMA-RAP. This indicated that fatigue cracking was not a problem with WMA-RAP mixtures whereas rutting resistance still requires further investigation and improvement.


2019 ◽  
Vol 276 ◽  
pp. 03004
Author(s):  
Gabriel Skronka ◽  
Martin Jasso ◽  
Otakar Vacin

The sustainable use of non-renewable natural resources, such as asphalt binder, can be achieved by adequate planning. The proper assessment of asphalt binders is a prerequisite to the appropriate designing of road constructions that can eventually result in pavements in which the development of pavement distresses can be mitigated. Rutting is the most common distress occurring at high temperatures, which is frequently experienced by such countries as Indonesia; thus, the use of adequate asphalt binder in hot mix asphalt pavements results in long-lasting road constructions. By means of advanced techniques, e.g., multiple stress creep recovery test, conducted on a dynamic shear rheometer, it is possible to determine the rutting potential of asphalt binders. This technique, however, still seems to be imprecise at currently determined shear stress values. This paper aims to investigate on the example of ten different asphalt binders, if creep and recovery measured at higher shear stresses result in better correlation with rutting potential of hot mix asphalts than that at the standardized stress levels. Concurrently, other conventional asphalt binder properties (e.g., penetration, softening point, elastic recovery) are determined and compared with rutting.


2017 ◽  
Vol 863 ◽  
pp. 129-134
Author(s):  
Petr Hyzl ◽  
Iva Krcmova ◽  
Pavla Nekulova ◽  
Ondrej Dasek ◽  
Pavel Coufalik

Recycling asphalt pavement creates a cycle of reusing materials that optimizes the use of natural resources. Reclaimed asphalt pavement (RAP) is a useful alternative to virgin materials because it reduces the need to use virgin aggregate. This paper is concerned with the current issue of using RAP in Stone Mastic Asphalt (SMA). SMA is a wearing course, which is especially stable and durable. It describes the effects of application of rejuvenators on properties of asphalt binders. These rejuvenation additives restore the physical and chemical properties of aged binders. In addition, the aged asphalt binder with rejuvenators applied was subjected to a short-term laboratory aging using the RTFOT (Rolling Thin Film Oven Test). To assess the binder properties, both the standard empirical tests and more advanced functional tests (dynamic shear rheometer and bending beam rheometer) have been performed. Last part of the paper provides an evaluation of the individual rejuvenation additives. Based on the results it can be concluded that a positive change in properties of aged asphalt binder obtained from a modified RAP (from SMA) after applying all the rejuvenators has been proven. The effect of the rejuvenators during the manufacturing process and laying has been verified.


Author(s):  
Zhou Zhou ◽  
Xingyu Gu ◽  
Jiwang Jiang ◽  
Fujian Ni ◽  
Yanxu Jiang

Chinese transportation agencies usually use the styrene–butadiene–styrene (SBS) modified binder and rejuvenators when applying higher reclaimed asphalt pavement (RAP) in surface courses. However, the rutting performance of RAP binder containing SBS binder and rejuvenators remains a problem. In order to better evaluate the rutting performance of asphalt binder, recently, a multiple stress creep recovery (MSCR) test (AASHTO T 350) was proposed and approved. This paper critically reviewed the AASHTO T 350 test method and AASHTO M 332 specification by carrying out a series of MSCR tests. A total of 18 types of SBS modified and modified RAP binders were tested. The effect of a rejuvenator on the rutting performance was analyzed. Three different MSCR tests were conducted considering different stress levels and creep recovery cycles, including test conditions of AASHTO T 350. The results indicated that AASHTO T 350 can grade the binders based on the nonrecoverable creep compliance and stress sensitivity parameters. Since SBS modified binders always have lower Jnr values at lower stress levels, higher stress levels and more creep recovery cycles are recommended to better evaluate the rutting resistance of binder. The addition of RAP decreased the Jnr values while the addition of rejuvenator had the opposite effect. The added SBS modified binder and rejuvenator have a negligible effect on the percentage recovery. It is suggested that a suitable rejuvenator dosage and virgin binder type should be chosen carefully to guarantee the rutting performance of RAP binder.


2021 ◽  
Vol 6 (3) ◽  
Author(s):  
Mohammad Ashiqur Rahman ◽  
Rouzbeh Ghabchi ◽  
Musharraf Zaman ◽  
Syed Ashik Ali

AbstractDespite significant economic and environmental benefits, performance of warm mix asphalt (WMA) containing reclaimed asphalt pavement (RAP) remains a matter of concern. Among the current WMA technologies, the plant foaming technique (called “foamed WMA” in this study) has gained the most attention, since it eliminates the need for chemical additives. In the present study, the laboratory performance, namely rutting and moisture-induced damage potential of foamed WMA containing RAP were evaluated and compared with those of similar hot mix asphalt (HMA) containing identical amount of RAP. Dynamic modulus, Hamburg wheel tracking (HWT) and flow number tests were performed to assess the rutting resistance of the mixes. Also, stripping inflection point from HWT tests and tensile strength ratio after AASHTO T 283 and moisture induced sensitivity test (MIST) conditioning were used to evaluate the moisture-induced damage of asphalt mixes. It was found that MIST conditioning effectively simulates the moisture-induced damage and can capture the propensity of asphalt mixes to moisture damage more distinctly compared to AASHTO T 283 method due to application of cyclic loadings. The foamed WMA was found to exhibit higher rutting and moisture-induced damage potential due to lower mixing and compaction temperatures compared to HMA. However, the increase in RAP content was found to reduce rutting and moisture-induced damage potential for WMA. Therefore, the lower stiffness of foamed WMA may be compensated with the addition of stiffer binder from RAP.


Sign in / Sign up

Export Citation Format

Share Document