Optimasi Proses Pembuatan dan Karakterisasi Fisik Niosom Sinkonin

Author(s):  
Hariyanti Hariyanti ◽  
Sophi Damayanti ◽  
Sasanti Tarini

Sinkonin praktis tidak larut dalam air, sedikit larut dalam kloroform dan alkohol. Hal ini berdampak pada rendahnya penetrasi transfollicular sinkonin, karena hanya bahan aktif hidrofilik yang mampu melewati hair follicle. Dengan demikian dibutuhkan satu sistem penghantaran yang mampu menurunkan hidrofobisitas sinkonin untuk meningkatkan penetrasi sinkonin ke follicle. Niosom merupakan vesikel ampifilik dengan struktur lapisan rangkap yang terbentuk dari hidrasi kombinasi surfaktan nonionik dan kolesterol yang mampu menurunkan hidrofobisitas sinkonin. Penelitian ini bertujuan untuk menentukan proses pembuatan niosom sinkonin yang optimum. Pembuatan niosom sinkonin diawali dengan menentukan temperatur gelasi (Tg) dari span 60 dengan Differential Scanning Calorimetry (DSC), kemudian dilanjutkan dengan optimasi proses meliputi: optimasi kecepatan rotavapor pembentukan film lapis tipis, temperatur hidrasi, kecepatan rotavapor hidrasi, waktu hidrasi, dan waktu sonikasi. Karakteristik vesikel niosom yang optimal meliputi: ukuran partikel dan indeks polidispersitas dengan menggunakan Particle Size Analized (PSA) serta efisiensi penjeratan sinkonin dengan menggunakan KCKT. Temperatur gelasi (Tg) span 60 45±2 oC, kecepatan rotavapor pembentukan film lapis tipis niosom 210 rpm, temperatur hidrasi 55±2 oC, kecepatan rotavapor hidrasi 210 rpm, waktu hidrasi 20 menit, waktu sonikasi suspensi niosom 1 menit. Ukuran vesikel yang diperoleh adalah 100–200 nm, indeks polidispersitas 0,2–0,4 dan efisiensi penjeratan niosom sinkonin 84,49±0,0025%. Proses pembuatan niosom sinkonin memiliki pengaruh besar terhadap hasil ukuran vesikel dan efisiensi penjeratan niosom sinkonin.

Author(s):  
S. Princely ◽  
Saleem Basha N ◽  
Saleem Basha N ◽  
Nandhakumar S ◽  
Dhanaraju Md

ABSTRACTObjective: Lamivudine (LVD) is a nucleoside reverse transcriptase inhibitor originally developed as an antiretroviral drug and primarily used in thetreatment of most common chronic disease of the planet, acquired immune deficiency syndrome and hepatitis B. The main objective of the study is todevelop controlled drug delivery system to increase the efficacy of antiretroviral drug, LVD against human immunodeficiency virus infections.Methods: The microencapsulation of LVD in gelatin microspheres was carried out by cross-linking process with glutaraldehyde saturated tolueneusing ionic-gelation method. The prepared microspheres were evaluated for particle size analysis, % yield value, % drug content, drug entrapmentefficiency, scanning electron microscopy for surface morphology, swelling index, accelerated stability studies, Fourier transform infrared radiationspectroscopy (FT-IR) and differential scanning calorimetry (DSC) for polymer drug compatibility, in vitro dissolution efficiency and release kineticstudies.Results: The obtained microspheres showed very smooth surface and exhibited regular spherical geometry due to higher crosslinking density. FT-IRand DSC revealed the absence of drug polymer interactions. The percentage yield, entrapment efficiency and drug content for F6 LVD microsphereswas found to be 79.31%, 65.55% and 96.25% respectively. The particle size was ranged from 34.61% to 51.45 µm sizes and in vitro release profileshowed that cross-linking density of gelatin microspheres effectively controlled the release of LVD.Conclusion: The findings of our investigation demonstrated that F6 of gelatin-LVD microspheres had good controlled release profile with maximumentrapment efficiency and prolonged drug release for 24 hrs or longer and this formulation would be capable of overcoming the drawbacks andlimitations of LVD conventional dosage forms.Keywords: Lamivudine, Microspheres, Controlled release, Gelatin, Fourier transform infrared, Differential scanning calorimetry, In vitro releasekinetics.


Author(s):  
Jaya Prakash Alla ◽  
Nishad Fathima Nishter ◽  
Jonnalagadda Raghava Rao

In the present study we have synthesised thermoresponsive syntan using phase changing material (PCM) encapsulated into a replacement syntan. Syntan was analysed for their particle size, thermal response was verified using Differential scanning calorimetry (DSC) and surface morphology was analysed using scanning electron microscopy (SEM). These syntans were applied to leathers for making leather thermoresponsive. The thermal comfort range achieved on leathers prepared using the experimental syntan was about 2.5℃, compared to control of about 0.5℃ with an error of ±0.5℃. The physical and strength properties of experimental leathers were superior compared to control.


2018 ◽  
Vol 10 (4) ◽  
pp. 133 ◽  
Author(s):  
Shweta Gedam ◽  
Pritee Jadhav ◽  
Swati Talele ◽  
Anil Jadhav

Objective: The present investigation was undertaken to develop and evaluate a gastroretentive mucoadhesive microspheres of anti-osteoporosis drug risedronate sodium to enhance the residence time and drug release by studying the effect of the crosslinking agent to obtain the best formulation with reduced particle size and good in vitro mucoadhesion strength.Methods: Selected drug risedronate sodium is a potent pyridinyl bisphosphonate used for the treatment of osteoporosis, and other bone disorders. Microspheres using sodium alginate as a polymer and calcium chloride solution as a cross-linker were prepared successfully by the emulsification crosslinking method. The 23 factorial design was used to study the effects of various variables like a drug: polymer ratio, crosslinking agent concentration and crosslinking time on the particle size and in vitro mucoadhesion strength. All these formulations were evaluated for entrapment efficiency, percentage yield and cumulative drug release. F1 batch was selected as best formulation and evaluated for scanning electron microscopy, fourier transforms infrared spectroscopy, differential scanning calorimetry, stability study.Results: Design batches were evaluated for percent yield (61.29-89.33%), % entrapment efficiency (42.25±0.620-62.58±0.330), mucoadhesion strength (68.15±0.37-82.24±0.72%) and drug release at 12 h (67-84%). Among the microspheres formulation, an F1 batch of (0.5:1) drug: polymer concentration and at 4% concentration of calcium chloride as a crosslinker was considered best formulation with reduced particle size 32.85±0.774μm, % intro mucoadhesion. 82.24±0.72. In vitro mucoadhesion strength was increased with the increasing crosslinking time from 5 min to 10 min. The fourier transform infrared spectroscopy (FTIR) and differential scanning calorimetry (DSC) study showed no interaction between drug and polymer. X-ray diffraction (XRD) spectrum of microspheres indicates that drug particles are dispersed at the molecular level in the polymer matrices so no indication of the crystalline nature of the drug nature. Scanning electron microscopic (SEM) study showed that microspheres were spherical in shape with a smooth surface. F1 batch shows percentage cumulative drug release 84.07%. In vitro dissolution studies indicates that percent cumulative drug release from microspheres follows zero order kinetics plot which indicates controlled-release drug-delivery for 12 h which leads to control of plasma concentration.Conclusion: The results show that the formulation that contains (0.5:1) drug: polymer ratio, calcium chloride in 4% concentration and crosslinking time 10 min is the best one and can be utilized to formulate risedronate sodium mucoadhesive microspheres to enhance gastric residence time, improved patient compliance and reduction in the frequency of drug administration.


2011 ◽  
Vol 236-238 ◽  
pp. 1935-1938 ◽  
Author(s):  
Song Ping Mo ◽  
Ying Chen ◽  
Li Si Jia ◽  
Xing Li ◽  
Xiang Long Luo

The solidification behaviors of titania(TiO2)-water nanofluid and deionized water (DI water) were investigated using differential scanning calorimetry (DSC) at cooling rates of 1.5—9.0 °C/min. The nanofluid with 0.3 wt% TiO2nanoparticles was prepared by dispersing the nanoparticles into DI water. The dispersion and stability was confirmed by a particle size and zeta potential analyzer. Experimental results show that the solidification temperature of the TiO2-water nanofluid was higher than that of DI water at the same cooling rate. The contact angles of TiO2 and the interior surface of the sample holder were measured, and the free energy barriers (FEB) of nucleation of the TiO2-water nanofluid and DI water were calculated. It was found that the FEB of nucleation induced by the TiO2 nanoparticles was lower than that by the flat surface, resulting in lower supercooling degree.


2010 ◽  
Vol 148-149 ◽  
pp. 1062-1066 ◽  
Author(s):  
Ren Bo Yang ◽  
Wei Guo Fu ◽  
Xiang Yun Deng ◽  
Zhong Wen Tan ◽  
Yan Jie Zhang ◽  
...  

The (Ba0.88Ca0.12)( Zr0.12Ti0.88)O3 powders and piezoelectric ceramics were prepared by sol-gel process. The reaction process was analyzed with the help of thermo gravimetric and differential scanning calorimetry. X-ray diffraction characterized results showed that the structure of the (Ba0.88Ca0.12)( Zr0.12Ti0.88)O3 powders was perovskite structure and the particle size was approximately 37nm. Piezoelectric measurements revealed that Curie temperature and the maximum piezoelectric coefficient d33 is 95°C and 215pm/V, respectively.


Sign in / Sign up

Export Citation Format

Share Document