scholarly journals Kinetika Reaksi Hidrogenasi Ester Lemak Menjadi Alkohol Lemak Dengan Katalis Tembaga- Mangan

2020 ◽  
Vol 8 (1) ◽  
pp. 21-27
Author(s):  
Melia Laniwati Gunawan ◽  
IGBN Makertihartha ◽  
Subagjo Subagjo

Fatty alcohol (FAOH) can be produced by hydrogenating of fatty acid methyl ester (FAME) using the copper-based catalyst. Copper-Chrom (Cu-Cr) is the best catalyst for high-pressure reaction condition, which is copper (Cu) as the main active component and chrom (Cr) as a promoter. Since Cr is feared to be toxic, one of the best replacement candidates is manganese (Mn). The research aims is to find the kinetic equation of hydrogenation FAME to FAOH using a Cu-Mn commercial catalyst.  FAME with methyl laurate and methyl myristate as the main compounds is used as feedstock. The main products are lauryl alcohol and myristyl alcohol. The reaction was carried out in an isothermal continuous fixed bed reactor under conditions of temperature 220 – 240 oC, pressure 50 bar, and liquid hourly space velocity (LHSV) 5-12.5 hr-1.  The kinetic equation is determined using the power law model. The FAME hydrogenation on copper - manganese catalyst is the half order reaction. The activation energy value is 86.32 kJ/mol and the Arrhenius constant value is 5.87x106  M0.5/s.

2013 ◽  
Vol 781-784 ◽  
pp. 308-311 ◽  
Author(s):  
Xin Li ◽  
Wei Su ◽  
Qi Bin Xia ◽  
Zhi Meng Liu

Manganese and cerium based catalysts with different Mn/Ce molar ratios prepared by impregnation method for ethyl acetate oxidation. The activity tests of the samples were performed in a fixed-bed reactor. The effect of gas hourly space velocity (GHSV) and ethyl acetate concentration on the catalytic activity of the catalyst were also investigated. The results showed that these catalysts had high activity for the catalytic oxidation of ethyl acetate, of which the catalyst Mn0.9Ce0.1Ox/TiO2exhibitedthe bestactivity, and the temperature required for 90% conversion of ethyl acetate was at 216 °C. The catalyst Mn0.9Ce0.1Ox/TiO2still maintained high activity in the range of GHSV (16,500 to 48,500 h-1) and ethyl acetate concentration (4526 to 7092 mg/m3). In additional, experiments for measuring stability of Mn0.9Ce0.1Ox/TiO2were carried out, and experimental results showed that the good stability of Mn0.9Ce0.1Ox/TiO2was kept after it has run for 25 hours.


2018 ◽  
Vol 913 ◽  
pp. 900-906
Author(s):  
Dong Zhu Ma ◽  
Jian Li ◽  
Di Yin ◽  
Yuan Huang ◽  
Rui Min Wang ◽  
...  

Mo-V-Ti catalysts of low temperature denitrification were prepared by dipping method. In order to study the activity of selective catalytic reduction, the catalyst was placed in a fixed bed reactor. Industrial flue gas was simulated with cylinder gas. The experimental condition is NO: 500ppm, NH3:500ppm, O2:8%, SO2:100ppm, N2: equilibrium gas, space velocity: 36000h-1. Results indicate that the catalyst prepared by dipping method had good denitrification activity and sulfur resistance at low temperature. The optimum ratio of catalyst was 3V2O5-6MoO3-91TiO2 (wt %). The conversion efficiency of NO was 80~93%, and the conversion efficiency of SO2 was less than 1% at 180~260 °C.


Author(s):  
O¨zlem Onay ◽  
O¨. Mete Koc¸kar

In this study, the safflower seed (Carthamus tinctorius L.) was used as biomass sample for catalytic pyrolysis using commercial catalyst (Criterion-454) in the nitrogen atmosphere. Experimental studies were conducted in a well-swept resistively heated fixed bed reactor with a heating rate of 300°Cmin−1, a final pyrolysis temperature of 550°C and particle size of 0.6–0.85 mm. In order to establish the effect of catalyst ratio on the pyrolysis yields, experiments were conducted at a range of catalyst ratios between 1, 3, 5, 7, 10, 20% (w/w). The bio-oils were characterized by elemental analysis and some spectroscopic and chromatographic techniques.


2011 ◽  
Vol 233-235 ◽  
pp. 990-998 ◽  
Author(s):  
Dian Hua Liu ◽  
Ding Ye Fang ◽  
Qin Qin Guan ◽  
A Jian Tao

The conventional process for isobornyl acetate synthesis from camphene and acetic acid is a batch process. The purpose of this paper is to synthesize isobornyl acetate in continuous process in a fixed bed reactor. The continuous reaction conditions were studied. The experiment was put into practice under the following conditions: 35-45, camphene/acetic acid feed ratio(wt%) from 1 to 2 and space velocity from 0.6 to 1.8 h-1. A kinetic model was developed which describes the experimental data well. A pilot fixed reactor was simulated by using the kinetic model.


2014 ◽  
Vol 953-954 ◽  
pp. 1053-1062 ◽  
Author(s):  
Yan Zhen Wang ◽  
Jing Tao Yan ◽  
Li Gao ◽  
Chun Min Song ◽  
Hong Ling Duan ◽  
...  

Batch-type base catalysis is currently the main process used for biodiesel production. Methods to reduce costs, improve capacity and decrease the emission of pollutants in the production of biodiesel are of great significance. This paper studied the reaction conditions for fatty acid methyl ester (FAME, referred to as biodiesel) production through the transesterification of soybean oil with methanol in the presence of Mg-Al hydrotalcite/γ-Al2O3as a fixed-bed catalyst. The influences of the methanol-oil ratio, space velocity, reaction temperature and pressure on product conversion were investigated. The results indicated that the optimum reaction conditions were as follows: methanol/oil ratio of 21:1, space velocity of 0.5 h-1, reaction temperature of 340°C, and reaction pressure of 2 MPa. Under these conditions, the one stage conversion rate was 80% and the lifetime of the catalyst was 220 h. The catalyst can process raw materials with high total acid numbers using two stages project.


2011 ◽  
Vol 322 ◽  
pp. 15-20
Author(s):  
Li Min Xi ◽  
Shu Yong Cao

Fatty acid methyl ester biodiesel was successfully synthesized by the esterification of the palm oil deodorizer distillate (PODD) with methanol, catalyzed by the strongly acidic cation-exchange resin as solid acid in a self-made fixed bed reactor. The reaction condition was optimized, and the product could basically reach both national standard and Germany standard.


Catalysts ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 91 ◽  
Author(s):  
Gisele C. R. Silva ◽  
Dali Qian ◽  
Robert Pace ◽  
Olivier Heintz ◽  
Gilles Caboche ◽  
...  

Inexpensive Ni-based catalysts can afford comparable performance to costly precious metal formulations in the conversion of fat, oil, or greases (FOG) to fuel-like hydrocarbons via decarboxylation/decarbonylation (deCOx). While the addition of certain metals has been observed to promote Ni-based deCOx catalysts, the steady-state performance of bimetallic formulations must be ascertained using industrially relevant feeds and reaction conditions in order to make meaningful comparisons. In the present work, used cooking oil (UCO) was upgraded to renewable diesel via deCOx over Ni/Al2O3 promoted with Cu, Fe, or Pt in a fixed-bed reactor at 375 °C using a weight hourly space velocity (WHSV) of 1 h−1. Although all catalysts fully deoxygenated the feed to hydrocarbons throughout the entire 76 h duration of these experiments, the cracking activity (and the evolution thereof) was distinct for each formulation. Indeed, that of the Ni-Cu catalyst was low and relatively stable, that of the Ni-Fe formulation was initially high but progressively dropped to become negligible, and that of the Ni-Pt catalyst started as moderate, varied considerably, and finished high. Analysis of the spent catalysts suggests that the evolution of the cracking activity can be mainly ascribed to changes in the composition of the metal particles.


2013 ◽  
Vol 864-867 ◽  
pp. 366-372 ◽  
Author(s):  
Liang Yan Xia ◽  
Zhi Xiang Xia ◽  
Wei Tang ◽  
Hong Yan Wang ◽  
Meng Xiang Fang

MCM-41 supported nickel phosphide (Ni2P/MCM-41) was prepared by temperature-programmed reduction of the corresponding phosphate. The catalyst activity for hydrodeoxygenation (HDO), hydrodearomatization (HDA), hydrodenitrogenation (HDN) and hydrodesulfurization (HDS) was investigated in a fixed bed reactor. O-cresol HDO, 1-methylnaphthalene HDA, quinoline HDN, dibenzothiophene HDS and simultaneous HDO, HDA, HDN, HDS were respectively tested at different temperatures with constant pressure (6.0 MPa), liquid hourly space velocity (3.0 h-1), hydrogen-to-oil volume ratio (600:1). The results indicate that Ni2P /MCM-41 catalyst has great performance on HDO, HDA, HDN, HDS in single model compound reactions. O-cresol and DBT are almost completely transformed at 375°C, while 1-methylnaphthalene and quinoline reach the highest conversion at 300°C. In the simultaneous reactions, quinoline shows higher conversion by competitive adsorption on the catalyst hydrogenation sites, leading to conversion decrease of o-cresol, 1-methylnaphthalene and DBT.


2014 ◽  
Vol 1025-1026 ◽  
pp. 782-786 ◽  
Author(s):  
Hua Song ◽  
Fu Yong Zhang ◽  
Zai Shun Jin ◽  
Huai Yuan Wang ◽  
Yan Ji Zhu ◽  
...  

Ni2P/TiO2-Al2O3catalysts were prepared by impregnation of nickel phosphate precursors followed by reduction in hydrogen. The catalysts were characterized by X-ray diffraction (XRD), N2-adsorption specific surface area measurements (BET), transmission electron microscope (TEM), X-ray photoelectron spectroscopy (XPS) and thermogravimetry differential thermal analysis (TG-DTA). The effects of reduction temperature on catalyst structure and HDS activity were studied using a lab-scale continuous flow fixed-bed reactor.. The results indicated that the catalyst prepared with reduction temperature of 973 K exhibited the best performance. At a reaction temperature of 606 K, a pressure of 3.0 MPa, a hydrogen/oil ratio of 500 (V/V), and a weight hourly space velocity (WHSV) of 2.0 h-1, the conversion of DBT HDS was 96.0%.


2018 ◽  
Vol 913 ◽  
pp. 893-899
Author(s):  
Dong Zhu Ma ◽  
Jian Li ◽  
Ling Zhang ◽  
Peng Guo ◽  
Zi Qiang Wen ◽  
...  

Mg-Mo-V-Ti catalysts of low temperature denitrification were prepared by dipping method. In order to study the activity of selective catalytic reduction, the catalyst was placed in a fixed bed reactor. Industrial flue gas was simulated with cylinder gas. Results indicate that the 0.1wt% content of MgO catalyst has good performance on denitration activity and sulfur resistance. The effects of oxygen content, space velocity and reaction temperature on the activity of the 0.1MgO-6MoO3-3V2O5-TiO2 wt% catalyst were investigated. With the increase of oxygen concentration, the denitrification efficiency increases when the oxygen concentration is less than 8%. When the oxygen content is greater than 8%, the denitrification efficiency is almost the same. The denitrification efficiency decreases with the increase of space velocity. The removal efficiency of NO 0.1MgO-6MoO3-3V2O5-TiO2 wt% catalyst over increases first and then becomes stable with the increase of temperature, and the conversion efficiency of SO2 is less than or equal to 2.2% at 120~240 °C.


Sign in / Sign up

Export Citation Format

Share Document