UPAYA MEMPERTAHANKAN BUNGA DAN FRUIT SET TANAMAN CABAI (Capsicum annum L.) PADA LAHAN ULTISOL MELALUI PEMBERIAN LUMPUR LAUT DAN PUPUK KANDANG

2017 ◽  
Vol 13 (2) ◽  
pp. 74-77
Author(s):  
Imelda J Lawalatta ◽  
Francina Matulessy ◽  
Meitty L Hehanussa

Chili (Capsicum annum L.) often experience the highest price fluctuations in Indonesia. This is caused by the production that is often disrupted in certain months, especially in the months in the rainy season due to flowers and fruits that fall before the harvest. Since agricultural land has changed its function for infrastructure development, marginal land (Ultisol) is used. The ultisol problem is: high acidity, low organic matter content, nutrient deficiency important for plants (eg N, P, Ca, Mg and Mo) and high solubility of Al, Fe and Mn. The provision of organic materials such as manure and marine mud will overcome the problem of acid-rich mineral soil and play an important role in improving, increased and maintaining sustainable land productivity. Research results for chili flower significantly. the highest number of flowers found in the treatment of L0P3, L1P2, L1P3 and L2P3 that is > 60 flower/plant. There was a single factor effect for the amount of fruit, mostly found in L3 treatment (600 ton/ha marine mud) that is 22.36 fruit/plant. The treatment of manure significantly influenced the formation of the most fruit set in the treatment of P0 and P2 (without manure and manure 20 ton/ha) that is 77.60% and 70.,45%. Keywords: Ultisol, Marine mud, Manure, Flowers and Fruit sets   ABSTRAK Tanaman cabai besar (Capsicum annum L.) sering mengalami fluktuasi harga paling tinggi di Indonesia. Hal tersebut disebabkan oleh produksi yang sering terganggu pada bulan tertentu terutama pada bulan-bulan di musim penghujan dikarenakan bunga dan buah yang rontok sebelum panen. Karena lahan pertanian banyak beralih fungsinya untuk pembangunan infrastuktur, maka digunakan lahan marginal (Ultisol). Masalah ultisol ialah: kemasaman tinggi, kadar bahan organik yang rendah, kekurangan unsur hara penting bagi tanaman (contoh: N, P, Ca, Mg dan Mo) serta tingginya kelarutan Al, Fe dan Mn. Pemberian bahan organik seperti pupuk kandang dan Lumpur laut akan mengatasi persoalan tanah mineral masam berkadar Al tinggi dan berperan penting dalam memperbaiki, meningkatkan serta mempertahankan produktifitas lahan secara berkelanjutan Hasil Penelitian untuk jumlah bunga cabai berpengaruh signifikan. jumlah bunga terbanyak terdapat pada perlakuan L0P3, L1P2, L1P3 dan L2P3 yaitu > 60 bunga/tanaman. Terjadi pengaruh faktor tunggal untuk jumlah buah, terbanyak terdapat pada perlakuan L3 ( 600 ton/ha lumpur laut) yaitu 22,36 buah/tanaman. Perlakuan pupuk kandang berpengaruh signifikan Pembentukan fruit set terbanyak pada perlakuan P0 dan P2 (tanpa pupuk kandang dan pupuk kandang 20 ton/ha) yaitu 77,60% dan 70,45%. Kata kunci: Ultisol, Lumpur Laut, Pupuk Kandang, Bunga dan Fruit set

Author(s):  
Amita M Watkar ◽  

Soil, itself means Soul of Infinite Life. Soil is the naturally occurring unconsolidated or loose covering on the earth’s surface. Physical properties depend upon the amount, size, shape, arrangement, and mineral composition of soil particles. It also depends on the organic matter content and pore spaces. Chemical properties depend on the Inorganic and organic matter present in the soil. Soils are the essential components of the environment and foundation resources for nearly all types of land use, besides being the most important component of sustainable agriculture. Therefore, assessment of soil quality and its direction of change with time is an ideal and primary indicator of sustainable agricultural land management. Soil quality indicators refer to measurable soil attributes that influence the capacity of a soil to function, within the limits imposed by the ecosystem, to preserve biological productivity and environmental quality and promote plant, animal and human health. The present study is to assess these soil attributes such as physical and chemical properties season-wise.


2002 ◽  
Vol 82 (4) ◽  
pp. 433-438 ◽  
Author(s):  
M T Morera ◽  
J. Echeverría ◽  
J. Garrido

The recycling of sewage sludge to agricultural land results in the slow accumulation of potentially toxic heavy metals in soils. A greenhouse experiment was conducted to determine the bioavailability of Cu, Ni, Pb and Zn applied to soils in urban anaerobically stabilized sewage sludge. The soils were Lithic Haplumbrept (Lh), Calcixerollic Xerochrept (Cx1 and Cx2) and Paralithic Xerorthent (Px). Sunflower plants (Helianthus annuus L) were grown in the soils following amendment with the sludge. The addition of sewage sludge markedly increased the average dry weight of the plants in the soils that had lower yields without sludge addition (Lh, Cx2, and Px). The acid pH of the Lh soil favoured the bioavailability of Zn from sewage sludge. The bioavailability of Cu was greater in the alkaline soils than in the acidic soil (Lh), which can be attributed to the high organic matter content of the Lh soil which complexes Cu and impairs its uptake by the plants. The concentration of metals in the plants increased with the sewage sludge dose. The effect of the soil type on the metal concentration in plants was greater that the effect of the dose. Key words: Soils, sewage sludge, heavy metals, bioavailability, sunflower


1998 ◽  
Vol 131 (4) ◽  
pp. 455-464 ◽  
Author(s):  
B. J. CHAMBERS ◽  
T. W. D. GARWOOD

Lime loss rates were determined for 11 agricultural soils across England (1987–92) under arable cropping (six sites) and grassland management (five sites), receiving commercial rates of fertilizer inputs. Lime additions in the range 0–1500 kg ha−1 CaCO3 (250 kg ha−1 CaCO3 increments) were made annually to the sites. Soil pH (water and 0·01 m CaCl2) and exchangeable calcium concentrations were measured annually. The annual lime loss rates were calculated as the amount of lime needed to maintain the initial site pH or exchangeable Ca concentrations.Lime loss rates based on soil water pH varied between 40 and 1270 kg ha−1 CaCO3, on the basis of CaCl2 pH between 0 and 1370 kg ha−1 CaCO3, and exchangeable Ca between 0 and 1540 kg ha−1 CaCO3. There was a positive relationship between the lime loss rate (based on water pH) and initial soil pH value (r=0·75; P<0·01), and a negative relationship with soil organic matter content (r=0·63; P<0·05) was based on soil pH, organic matter content and nitrogen (N) fertilizer input. Lime loss rates were approximately double those predicted by previous models developed in the 1970s, reflecting the greater quantities of inorganic N fertilizer now being applied to agricultural land.


2020 ◽  
Vol 17 (8) ◽  
pp. 545
Author(s):  
Jeonghyeon Ahn ◽  
Guiying Rao ◽  
Mustafa Mamun ◽  
Eric P. Vejerano

Environmental contextAssessing environmental and human health impacts of chemical spills relies on information about how chemicals move across multiple environments. We measured volatile contaminants in the air above soil saturated with water to provide estimates of air concentrations of selected chemicals released to soil from an oil refinery in Texas during Hurricane Harvey. Estimated concentrations were below recommended exposure limits, even in a worst-case scenario. AbstractThe emission of volatile organic compounds (VOCs) from soil into air is affected by soil moisture dynamics, soil temperature, solar irradiance and carbon availability. The high amount of water in soil can modify its properties, which changes how VOCs interact. We conducted a comprehensive measurement of the soil–air partition coefficient (KSA) of VOCs into water-saturated soil with both low and high water contents for polar, weakly polar and nonpolar VOCs into a mineral soil (S-clay) and soil containing a high amount of organic matter (S-om) under a water-saturated condition. Partitioning of non-polar substituted aromatics (1,2-dichlorobenzene and toluene) was sensitive to the organic matter content in water-saturated soil. 1,2-Dichlorobenzene and toluene had higher affinities to S-om than to S-clay at all investigated water contents because of their strong interaction with the organic matter in soil. KSA decreased with elevated water content only for non-polar substituted aromatic VOCs. Less hydrophobic VOCs (benzene and trichloroethylene) exhibited similar partitioning into both soils by sorbing onto the air-water interface and dissolving in soil water, while the organic matter did not affect partitioning. The weakly polar and polar VOCs (methyl tert-butyl ether and 1-butanol) showed similar partitioning into both soils by dissolving in soil water while sorption to the organic matter was significant only at high soil water contents. KSA of VOCs on soil with high organic matter content correlated strongly with psat and Koa, but not on mineral soil. Estimates of the air concentrations for a subset of VOCs released from one refinery during Hurricane Harvey in 2017 in Harris County, Texas were lower than the recommended exposure limits, even under a worst-case scenario.


Author(s):  
István Harta ◽  
Barbara Simon ◽  
Szergej Vinogradov ◽  
Dániel Winkler

Abstract The challenges of a changing climate have directed greater attention to afforestation, but the effects of afforestation on soil fertility and soil biota have not been fully clarified. To explore changes in the soil conditions in two 20-year-old forest plantations established in formerly intensively fertilized plots of agricultural land, we focused on the current developmental state of the sites that received the most fertilizer and evaluated soil properties and Collembola (springtails) communities. Sessile oak (Quercus petraea) and black locust (Robinia pseudoacacia) that had been planted in the afforestation sites were assessed for differences between plantations of native and invasive species. Five adjacent reference associations, including forests and open habitats, were also analyzed and compared. Results showed that the soils in the two afforested sites were similar in their properties and Collembola communities to those of the control cultivated forests, but differed from each other in pH, calcium, phosphorus, and ammonium content. The available potassium and phosphorus contents in the soil of the sessile oak plantation were still high, while the soil organic matter content was adequate (SOM > 2.0%) in both plantations. Species richness of Collembola ranged from 18 in the cultivated arable land to 43 in the relict forest. Only a few species typical for forests (e.g., Neanura muscorum, Isotomiella minor, Entomobrya muscorum) were detected in the young plantations, while species characteristic of open habitats (e.g., Protaphorura campata, Lepidocyrtus cyaneus) occurred as well. Although more individuals and species of Collembola were present in the soil of young plantations than in arable fields, their community diversities were significantly lower compared to the control forest stands. Collembola community diversity differed significantly also between the two plantation types (with native and non-native tree species). Mean abundance in the afforested sites was about 2.5 times higher than in the cultivated arable land, yet far lower than the mean abundance in the control forests.


1967 ◽  
Vol 47 (2) ◽  
pp. 83-88 ◽  
Author(s):  
S. K. Rana ◽  
G. J. Ouellette

Studies on thirty mineral soil series and five organic soils from the broad cultivated areas of Quebec indicated that total cobalt, extracted with 70% perchloric acid digestion, ranged from 1.1 to 21.6 ppm and 2.5% acetic acid-extractable cobalt from 0.3 to 0.83 ppm. Extractable cobalt in the surface soils was significantly correlated with total cobalt, which in turn was highly dependent on the clay content of the soil. The soil pH or the organic matter content did not seem to have any influence on the cobalt content in the cultivated soils. Light-textured and podzolized soils are likely to be low m cobalt, while soils with richer clay content are higher. Organic soils, in general, were found to be lower in cobalt content than mineral soils. Nineteen out of the thirty mineral soils studied and all the organic soils contained less than 0.25 ppm of extractable cobalt and may be considered as critical or deficient because forage grown on such soils is likely to cause cobalt deficiency in livestock.


1981 ◽  
Vol 29 (1) ◽  
pp. 49-61
Author(s):  
S. de Haan

Until about 1950, municipal waste compost in the Netherlands was used principally on agricultural soils (mainly reclaimed cut-over peat and heath soils). Between 1950 and 1970, about equal proportions of compost were utilized in agriculture, horticulture and in amenity areas. Since 1970, amenity areas have demanded more than 90% of the compost. The main producer of municipal waste compost in the Netherlands is the VAM Waste Disposal Company, with a production level of about 100,000 tonnes per year. Its domestic refuse recycling plant recovers about 33% of organic residues suitable for compost production. Microelement contents and Ca and S levels in the compost are high, N, P and K contents and availability are low, and the organic matter content is c. 30% (dry matter basis). Biennial applications of up to 40 t/ha of compost between 1948 and 1975 resulted in large increases in microelement concentrations in crops and especially in soils. The Zn content of crops in a range of compost/soil mixtures increased with increasing compost/soil ratio, and crop growth was greatest in 100% compost. The current tendency in the Netherlands towards large-scale recycling of municipal waste may lead to increased compost production. Because the recreational sector can only absorb limited quantities, this compost would largely be disposed of on agricultural land. In such a situation limits for maximum permissible concentrations of potentially toxic substances in this compost, and maximum permissible application rates, would need to be set: for sewage sludge such limits already exist. (Abstract retrieved from CAB Abstracts by CABI’s permission)


1990 ◽  
Vol 20 (9) ◽  
pp. 1332-1342 ◽  
Author(s):  
I. K. Morrison

Two sites, both supporting old-growth Acersaccharum Marsh, dominated forest on rugged topography in central northern Ontario, were compared in terms of organic matter and N, P, K, Ca, Mg, S, Fe, Mn, Zn, and Cu content in the tree- and field-layer phytomass, the forest floor, and the mineral soil. One site was on a shallow, low-base, Precambrian-derived till, and the other was on a till of somewhat higher base status. Gross and net growth of the overstory tree layer were also determined. Total phytomass values for the two stands at the beginning of the study period were 245 000 and 210 000 kg•ha−1, respectively. Gross growth was largely offset by mortality in both stands, producing a rough equilibrium with regard to net increment. Growth before mortality was on the order of 2.4–2.5 m3•ha−1•year−1 in terms of gross total wood volume or 3700–3900 kg•ha−1•year−1 in terms of phytomass, and it was slightly greater in percent terms on the higher base site. In addition to that in the phytomass, organic matter in the forest floor and mineral soil to a depth of 1 m also contributed to the total organic matter content of 638 000–642 000 kg•ha−1 (equivalent to 34 8000–353 000 kg•ha−1 of C) on both sites and was distributed as follows: 29–34% in phytomass, 5% in the forest floor, and 61–66% in mineral soil. The order of abundance of elements in the phytomass was similar on both sites: Ca > N > K > Mg > S > Mn > P > Fe > Zn > Cu, with accumulation in the phytomass in rough proportion to occurrence in the soil. A more base-rich parent material would appear to be the origin of 1452 kg•ha−1 of Ca estimated to be in the phytomass and forest floor on the higher base soil, compared with 1250 kg•ha−1 in the phytomass and forest floor on the lower base soil.


Soil Research ◽  
2016 ◽  
Vol 54 (7) ◽  
pp. 797 ◽  
Author(s):  
Sergio A. Belmonte ◽  
Luisella Celi ◽  
Silvia Stanchi ◽  
Daniel Said-Pullicino ◽  
Ermanno Zanini ◽  
...  

Vineyard soils are typically characterised by poor development, low organic matter content and steep slopes. Consequently, they have a limited capacity for conservation of organic matter that is weakly bound to the mineral soil phase. Under such conditions, establishment of permanent grass may improve soil quality conservation. The aim of this study was to evaluate the effects of permanent grass v. single autumn tillage on soil structure and organic matter dynamics in a hilly vineyard. During the periods 1994–1996 and 2010–2012, soil samples were collected three times per year, in different seasons. Aggregate stability analyses and organic matter fractionation were performed. The effects of grass cover on soil recovery capacity after tillage disturbance were slow to become apparent. Slight increases in aggregate resistance and organic matter contents were visible after 3 years, and the two plots (permanent grass/previously tilled) showed a large decrease of aggregate losses and increase of organic matter only after long-lasting permanent grass. However, even a single tillage produced an immediate decrease in aggregate resistance, while the organic matter content remained unaffected. Organic matter, however, showed marked seasonal dynamics, which involved not only recently added organic matter fractions but also the mineral-associated pool. Tillage altered organic matter dynamics by preventing the addition of new material into the mineral-associated organic fractions and limiting the stabilisation of aggregates.


1964 ◽  
Vol 44 (1) ◽  
pp. 137-144 ◽  
Author(s):  
R. L. Halstead

In laboratory incubation experiments liming with Ca(OH)2, CaCO3, or MgCO3 inhibited the phosphatase enzyme activity as measured by determination of phenol or phosphorus released from disodium phenyl phosphate. Chloride and sulphate salts of calcium and magnesium had no appreciable effect on the measured activity. Incubation for 9 months reduced the activity in a group of acid soils but not in a group of nearly neutral soils. Addition of phosphate prior to incubation had no effect on activity in either group.In buffer systems with the pH controlled over the range pH 2.0 to 11.0, activity in samples of an acid mineral soil increased gradually from pH 2.0 to a maximum at about pH 7.0, and then declined rapidly. The occurrence of peaks of optimum activity at pH 5.0 and 9.5 indicated the presence of both acid and alkaline phosphatases in an organic soil.Although there was no significant relationship between phosphatase activity and pH, clay content, nitrogen, and total carbon content of 10 mineral soils, there was a higher activity associated with higher organic matter content in three groups of soils with 3.2, 24.8, and 80.2% organic matter. Initial phosphatase activity of a group of mineral soils was not related to the degree of mineralization of organic soil phosphorus found to occur during an incubation period.


Sign in / Sign up

Export Citation Format

Share Document